Isolation and Flow Cytometric Characterization of Newborn Mouse Brain-Derived Microglia Maintained In Vitro

1991 ◽  
Vol 50 (1) ◽  
pp. 86-92 ◽  
Author(s):  
Nassef F. Hassan ◽  
Salahaldin Rifat ◽  
Donald E. Campbell ◽  
Lisa J. McCawley ◽  
Steven D. Douglas
1997 ◽  
Vol 78 (5) ◽  
pp. 2483-2492 ◽  
Author(s):  
Jens C. Rekling ◽  
Jack L. Feldman

Rekling, Jens C. and Jack L. Feldman. Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483–2492, 1997. The nucleus ambiguus contains vagal and glossopharyngeal motoneurons and preganglionic neurons involved in respiration, swallowing, vocalization, and control of heart beat. Here we show that the rostral compact formation's ambiguus neurons, which control the esophageal phase of swallowing, display calcium-dependent plateau potentials in response to tetanic orthodromic stimulation or current injection. Whole cell recordings were made from visualized neurons in the rostral nucleus ambiguus using a slice preparation from the newborn mouse. Biocytin-labeling revealed dendritic trees with pronounced rostrocaudal orientations confined to the nucleus ambiguus, a morphological profile matching that of vagal motoneurons projecting to the esophagus. Single-stimulus orthodromic activation, using an electrode placed in the dorsomedial slice near the nucleus tractus solitarius, evoked single excitatory postsynaptic potentials (EPSPs) or short trains of EPSPs (500 ms to 1 s). However, tetanic stimulation (5 pulses, 10 Hz) induced voltage-dependent afterdepolarizations or long-lasting plateau potentials (>1 min) with a constant firing pattern. Depolarizing or hyperpolarizing current pulses elicited voltage-dependent afterdepolarizations or plateau potentials lasting a few seconds to several minutes. Constant spike activity accompanied the long-lasting plateau potentials, which ended spontaneously or could be terminated by weak hyperpolarizing current pulses. Current-induced afterdepolarizations and plateau potentials were dependent on extracellularand intracellular Ca2+, as they were blocked completely by extracellular Co2+, Cd2+, or intracellular bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid (BAPTA). Orthodromically induced afterdepolarizations and plateau potentials were blocked by intracellular BAPTA. Afterdepolarizations and plateau potentials were completely blocked by substitution of extracellular Na+ with choline. Afterdepolarizations persisted in tetrodotoxin. We conclude that rostral ambiguus neurons have a Ca2+-activated inward current carried by Na+. Synaptic activation of this conductance may generate prolonged spike activity in these neurons during the esophageal phase of swallowing.


Dermatology ◽  
1987 ◽  
Vol 175 (1) ◽  
pp. 15-22 ◽  
Author(s):  
K. Katsuoka ◽  
H. Schell ◽  
O.P. Hornstein ◽  
E. Deinlein

1999 ◽  
Vol 127 (1) ◽  
pp. 300-308 ◽  
Author(s):  
Sven Werthwein ◽  
Ulrich Bauer ◽  
Michael Nakazi ◽  
Markus Kathmann ◽  
Eberhard Schlicker

1991 ◽  
Vol 66 (04) ◽  
pp. 453-458 ◽  
Author(s):  
John T Brandt

SummaryLupus anticoagulants (LAs) are antibodies which interfere with phospholipid-dependent procoagulant reactions. Their clinical importance is due to their apparent association with an increased risk of thrombo-embolic disease. To date there have been few assays for quantifying the specific activity of these antibodies in vitro and this has hampered attempts to purify and characterize these antibodies. Methods for determining phospholipid-dependent generation of thrombin and factor Xa are described. Isolated IgG fractions from 7 of 9 patients with LAs were found to reproducibly inhibit enzyme generation in these assay systems, permitting quantitative expression of inhibitor activity. Different patterns of inhibitory activity, based on the relative inhibition of thrombin and factor Xa generation, were found, further substantiating the known heterogeneity of these antibodies. These systems may prove helpful in further purification and characterization of LAs.


1992 ◽  
Vol 67 (01) ◽  
pp. 063-065 ◽  
Author(s):  
Sherryl A M Taylor ◽  
Jacalyn Duffin ◽  
Cherie Cameron ◽  
Jerome Teitel ◽  
Bernadette Garvey ◽  
...  

SummaryChristmas disease was first reported as a distinct clinical entity in two manuscripts published in 1952 (1, 2). The eponym associated with this disorder, is the surname of the first patient examined in detail and reported by Biggs and colleagues in a paper describing the clinical and laboratory features of seven affected individuals (3). This patient has severe factor IX coagulant deficiency (less than 0.01 units/ml) and no detectable circulating factor IX antigen (less than 0.01 units/ml). Coding sequence and splice junctions of the factor IX gene from this patient have been amplified in vitro through the polymerase chain reaction (PCR). One nucleotide substitution was identified at nucleotide 30,070 where a guanine was replaced by a cytosine. This mutation alters the amino acid encoded at position 206 in the factor IX protein from cysteine to serine. The non conservative nature of this substitution, the absence of this change in more than 200 previously sequenced factor IX genes and the fact that the remainder of the coding region of this gene was normal, all provide strong circumstantial evidence in favour of this change being the causative mutation in this patient. The molecular characterization of this novel mutation in the index case of Christmas disease, contributes to the rapidly expanding body of knowledge pertaining to Christmas disease pathogenesis.


Author(s):  
Markus Boel ◽  
Oscar J. Abilez ◽  
Ahmed N Assar ◽  
Christopher K. Zarins ◽  
Ellen Kuhl

Sign in / Sign up

Export Citation Format

Share Document