Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease

2017 ◽  
Vol 46 (2) ◽  
pp. 497-504 ◽  
Author(s):  
Bas T. Franssens ◽  
Hans Hoogduin ◽  
Tim Leiner ◽  
Yolanda van der Graaf ◽  
Frank L.J. Visseren
Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Ryutaro Ikegami ◽  
Ippei Shimizu ◽  
Takeshi Sato ◽  
Shuang Jiao ◽  
Yohko Yoshida ◽  
...  

Accumulating evidence suggests that adult humans possess active brown adipose tissue (BAT) that may contribute significantly to systemic metabolism because of its high energy consumption capacity. Recently, we demonstrated that metabolic stress induced BAT hypoxia and impaired mitochondrial function, leading to the development of BAT “whitening” and systemic metabolic dysfunction in murine obese models. Various neurotransmitters are known to be involved in the maintenance of BAT homeostasis. Among them, the gamma-aminobutyric acid (GABA) signaling in the central nervous system is well accepted to have anti-obesity effects through the activation of the sympathetic nervous system. Here we show the previously unknown role of peripheral GABA signaling in the development of systemic metabolic dysfunction in obesity. We generated an obese model by imposing a high fat/high sucrose (HFHS) diet on C57BL/6NCr mice. Mass spectrometry analysis demonstrated a significant increase in GABA level in BAT of the dietary obese model. Addition of GABA into drinking water induced BAT whitening, reduced the thermogenic response upon cold tolerance test, and promoted systemic metabolic dysfunction in the obese mice. Mitochondrial calcium is important for the maintenance of mitochondrial homeostasis, whereas calcium overload is reported to inhibit mitochondrial function. Treatment of BAT cells with GABA markedly increased mitochondrial calcium level, promoted the production of reactive oxygen species (ROS), and inhibited mitochondrial respiration. These results indicate that peripheral GABA contributes to the development of systemic metabolic dysfunction by inhibiting BAT function in obesity. The inhibition of peripheral GABA signaling would become a new therapeutic target for obesity and diabetes.


2015 ◽  
Vol 52 (3) ◽  
pp. 150-157 ◽  
Author(s):  
Mariëtte R. Boon ◽  
Leontine E. H. Bakker ◽  
Rianne A. D. van der Linden ◽  
Antoinette F. van Ouwerkerk ◽  
Pauline L. de Goeje ◽  
...  

2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Wenjing You ◽  
Ziye Xu ◽  
Ye Sun ◽  
Teresa G. Valencak ◽  
Yizhen Wang ◽  
...  

Abstract Stress can lead to obesity and metabolic dysfunction, but the underlying mechanisms are unclear. Here we identify GADD45α, a stress-inducible histone folding protein, as a potential regulator for brown adipose tissue biogenesis. Unbiased transcriptomics data indicate a positive correlation between adipose Gadd45a mRNA level and obesity. At the cellular level, Gadd45a knockdown promoted proliferation and lipolysis of brown adipocytes, while Gadd45a overexpression had the opposite effects. Consistently, using a knockout (Gadd45a−/−) mouse line, we found that GADD45α deficiency inhibited lipid accumulation and promoted expression of thermogenic genes in brown adipocytes, leading to improvements in insulin sensitivity, glucose uptake, energy expenditure. At the molecular level, GADD45α deficiency increased proliferation through upregulating expression of cell cycle related genes. GADD45α promoted brown adipogenesis via interacting with PPARγ and upregulating its transcriptional activity. Our new data suggest that GADD45α may be targeted to promote non-shivering thermogenesis and metabolism while counteracting obesity.


Author(s):  
Jennifer Honek ◽  
Sharon Lim ◽  
Carina Fischer ◽  
Hideki Iwamoto ◽  
Takahiro Seki ◽  
...  

AbstractThe number of obese and overweight individuals is globally rising, and obesity-associated disorders such as type 2 diabetes, cardiovascular disease and certain types of cancer are among the most common causes of death. While white adipose tissue is the key player in the storage of energy, active brown adipose tissue expends energy due to its thermogenic capacity. Expanding and activating brown adipose tissue using pharmacological approaches therefore might offer an attractive possibility for therapeutic intervention to counteract obesity and its consequences for metabolic health.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2626-2633 ◽  
Author(s):  
S. Kosari ◽  
J. A. Rathner ◽  
F. Chen ◽  
S. Kosari ◽  
E. Badoer

Resistin, an adipokine, is believed to act in the brain to influence energy homeostasis. Plasma resistin levels are elevated in obesity and are associated with metabolic and cardiovascular disease. Increased muscle sympathetic nerve activity (SNA) is a characteristic of obesity, a risk factor for diabetes and cardiovascular disease. We hypothesized that resistin affects SNA, which contributes to metabolic and cardiovascular dysfunction. Here we investigated the effects of centrally administered resistin on SNA to muscle (lumbar) and brown adipose tissue (BAT), outputs that influence cardiovascular and energy homeostasis. Overnight-fasted rats were anesthetized, and resistin (7 μg) was administered into the lateral cerebral ventricle (intracerebroventricular). The lumbar sympathetic nerve trunk or sympathetic nerves supplying BAT were dissected free, and nerve activity was recorded. Arterial blood pressure, heart rate, body core temperature, and BAT temperature were also recorded. Responses to resistin or vehicle were monitored for 4 h after intracerebroventricular administration. Acutely administered resistin increased lumbar SNA but decreased BAT SNA. Mean arterial pressure and heart rate, however, were not significantly affected by resistin. BAT temperature was significantly reduced by resistin, and there was a concomitant fall in body temperature. The findings indicate that resistin has differential effects on SNA to tissues involved in metabolic and cardiovascular regulation. The decreased BAT SNA and the increased lumbar SNA elicited by resistin suggest that it may contribute to the increased muscle SNA and reduced energy expenditure observed in obesity and diabetes.


2014 ◽  
Vol 21 (2) ◽  
pp. 166-172 ◽  
Author(s):  
Justin D Crane ◽  
Rengasamy Palanivel ◽  
Emilio P Mottillo ◽  
Adam L Bujak ◽  
Huaqing Wang ◽  
...  

2018 ◽  
Vol 314 (4) ◽  
pp. R584-R597 ◽  
Author(s):  
Zachary I. Grunewald ◽  
Nathan C. Winn ◽  
Michelle L. Gastecki ◽  
Makenzie L. Woodford ◽  
James R. Ball ◽  
...  

Brown adipose tissue (BAT) is considered protective against obesity and related cardiometabolic dysfunction. Indeed, activation of BAT improves glucose homeostasis and attenuates cardiovascular disease development. However, whether a reduction in BAT mass perturbs metabolic function and increases risk for cardiovascular disease remains largely unknown. To address this question, C57BL/6J male mice underwent a sham procedure or surgical bilateral excision of interscapular BAT (iBATx) and were fed a normal chow or a Western diet for 18 wk, creating four groups ( n = 10/group). Mice were housed at 25°C. As expected, the Western diet increased final body weight and adiposity; however, contrary to our hypothesis, iBATx did not potentiate adiposity independent of diet. Furthermore, iBATx did not affect indexes of glycemic control (HbA1c, fasting glucose and insulin, and glucose area under the curve during a glucose tolerance test) and produced minimal-to-no effects on lipid homeostasis. The absence of metabolic disturbances with iBATx was not attributed to regrowth of iBAT or a “browning” or proliferative compensatory response of other BAT depots. Notably, iBATx caused an increase in aortic stiffness in normal chow-fed mice only, which was associated with an increase in aortic uncoupling protein-1. Collectively, we demonstrated that, at 25°C (i.e., limited thermal stress conditions), a substantial reduction in BAT mass via iBATx does not disrupt systemic glucose metabolism, challenging the current dogma that preservation of BAT is obligatory for optimal metabolic function. However, iBATx caused aortic stiffening in lean mice, hence supporting the existence of an interplay between iBAT and aortic stiffness, independent of alterations in glucose homeostasis.


2016 ◽  
Vol 57 (8) ◽  
pp. 1221-1225 ◽  
Author(s):  
R. A. P. Takx ◽  
A. Ishai ◽  
Q. A. Truong ◽  
M. H. MacNabb ◽  
M. Scherrer-Crosbie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document