Phytochemical analysis of Ononis arvensis L. by liquid chromatography coupled with mass spectrometry

2019 ◽  
Vol 54 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Nóra Gampe ◽  
András Darcsi ◽  
Andrea Nagyné Nedves ◽  
Imre Boldizsár ◽  
László Kursinszki ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5580
Author(s):  
Mayya P. Razgonova ◽  
Alexander M. Zakharenko ◽  
Elena I. Gordeeva ◽  
Olesya Yu. Shoeva ◽  
Elena V. Antonova ◽  
...  

The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here as black) grains of seven genetically related wheat lines developed for the grain anthocyanin pigmentation trait. To identify target analytes in ethanol extracts, high-performance liquid chromatography was used in combination with Bruker Daltonics ion trap mass spectrometry. The results showed the presence of 125 biologically active compounds of a phenolic (85) and nonphenolic (40) nature in the grains of T. aestivum (seven lines). Among them, a number of phenolic compounds affiliated with anthocyanins, coumarins, dihydrochalcones, flavan-3-ols, flavanone, flavones, flavonols, hydroxybenzoic acids, hydroxycinnamic acids, isoflavone, lignans, other phenolic acids, stilbenes, and nonphenolic compounds affiliated with alkaloids, carboxylic acids, carotenoids, diterpenoids, essential amino acids, triterpenoids, sterols, nonessential amino acids, phytohormones, purines, and thromboxane receptor antagonists were found in T. aestivum grains for the first time. A comparative analysis of the diversity of the compounds revealed that the lines do not differ from each other in the proportion of phenolic (53.3% to 70.3% of the total number of identified compounds) and nonphenolic compounds (46.7% to 29.7%), but diversity of the compounds was significantly lower in grains of the control line. Even though the lines are genetically closely related and possess similar chemical profiles, some line-specific individual compounds were identified that constitute unique chemical fingerprints and allow to distinguish each line from the six others. Finally, the influence of the genotype on the chemical profiles of the wheat grains is discussed.


2009 ◽  
Vol 1216 (11) ◽  
pp. 2045-2062 ◽  
Author(s):  
Min Yang ◽  
Jianghao Sun ◽  
Zhiqiang Lu ◽  
Guangtong Chen ◽  
Shuhong Guan ◽  
...  

2015 ◽  
Vol 14 (3) ◽  
pp. 469-498 ◽  
Author(s):  
Kanumuri Siva Rama Raju ◽  
Naveen Kadian ◽  
Isha Taneja ◽  
M. Wahajuddin

2007 ◽  
Vol 177 (4S) ◽  
pp. 295-295
Author(s):  
Michael Mullerad ◽  
Haleem J. Issaq ◽  
Alexander Kravtsov ◽  
Timothy Waybright ◽  
Brian Luke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document