scholarly journals Assessment of core and support functions of the communicable disease surveillance system in the Kurdistan Region of Iraq

Author(s):  
Soran Amin Hamalaw ◽  
Ali Hattem Bayati ◽  
Muhammed Babakir‐Mina ◽  
Domenico Benvenuto ◽  
Silvia Fabris ◽  
...  
Author(s):  
Soran Amin Hamalaw ◽  
Ali Hattem Bayati ◽  
Muhammed Babakir-Mina

Background The quality of the surveillance system can be defined by attributes such as completeness, timeliness, usefulness, simplicity, flexibility, acceptability, and reliability. This study aims to assess these quality features of the communicable disease surveillance system (CDSS) in the Kurdistan Region of Iraq. Methods This study was conducted using a retrospective review of records and documents, and the interviews with the surveillance staff (n = 82) of the Kurdistan governorates during 2018, 2019, and 2020. The World Health Organization (WHO) guideline 2006 indicators were used for evaluation and monitoring the quality of the communicable disease surveillance system. The data analyzed and showed as frequencies and percentages using Statistical Package for the Social Sciences (SPSS) version 26 software. Results The reporting timeliness declined from 98% in 2019 to 69% in 2020. At the same time, there was an improvement in completeness of reporting from 83% in 2018 to 99% in 2020. The total scores of other surveillance quality attributes, simplicity, usefulness, flexibility, acceptability, and reliability, were 75%, 72%, 67%, 72%, and 69%, respectively. Conclusion Current findings demonstrate that the CDSS is still facing significant challenges in timeliness simplicity, usefulness, flexibility, acceptability, and reliability. Further studies to assess the system’s quality, particularly the system’s timeliness of outbreak response, sensitivity, and specificity, are recommended.


2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Revati K Phalkey ◽  
Sharvari Shukla ◽  
Savita Shardul ◽  
Nutan Ashtekar ◽  
Sapna Valsa ◽  
...  

1999 ◽  
Vol 4 (9) ◽  
pp. 91-91
Author(s):  
F Tissot

Between March and June 1999, 442 000 Kosovar refugees arrived in Albania. The national surveillance system was unprepared for this and an emergency communicable disease surveillance system was set up to detect and control potential outbreaks among the ref


2015 ◽  
Vol 9 (4) ◽  
pp. 367-373 ◽  
Author(s):  
Javad Babaie ◽  
Ali Ardalan ◽  
Hasan Vatandoost ◽  
Mohammad Mehdi Goya ◽  
Ali Akbari Sari

AbstractObjectiveFollowing the twin earthquakes on August 11, 2012, in the East Azerbaijan province of Iran, the provincial health center set up a surveillance system to monitor communicable diseases. This study aimed to assess the performance of this surveillance system.MethodsIn this quantitative-qualitative study, performance of the communicable diseases surveillance system was assessed by using the updated guidelines of the Centers for Disease Control and Prevention (CDC). Qualitative data were collected through interviews with the surveillance system participants, and quantitative data were obtained from the surveillance system.ResultsThe surveillance system was useful, simple, representative, timely, and flexible. The data quality, acceptability, and stability of the surveillance system were 65.6%, 10.63%, and 100%, respectively. The sensitivity and positive predictive value were not calculated owing to the absence of a gold standard.ConclusionsThe surveillance system satisfactorily met the goals expected for its setup. The data obtained led to the control of communicable diseases in the affected areas. Required interventions based on the incidence of communicable disease were designed and implemented. The results also reassured health authorities and the public. However, data quality and acceptability should be taken into consideration and reviewed for implementation in future disasters. (Disaster Med Public Health Preparedness. 2015;9:367–373)


Author(s):  
Mohammed Husain ◽  
Mahmudur Rahman ◽  
Asm Alamgir ◽  
M. Salim Uzzaman ◽  
Meerjady Sabrina Flora

Objectivea) To observe trends and patterns of diseases of public health importance and responseb) To predict, prevent, detect, control and minimize the harm caused by public health emergenciesc) To develop evidence for managing any future outbreaks, epidemic and pandemicIntroductionDisease surveillance is an integral part of public health system. It is an epidemiological method for monitoring disease patterns and trends. International Health Regulation (IHR) 2005 obligates WHO member countries to develop an effective disease surveillance system. Bangladesh is a signatory to IHR 2005. Institute of Epidemiology, Disease Control and Research (IEDCR <www.iedcr.gov.bd>) is the mandated institute for surveillance and outbreak response on behalf of Government of the People’s Republic of Bangladesh. The IEDCR has a good surveillance system including event-based surveillance system, which proved effective to manage public health emergencies. Routine disease profile is collected by Management Information System (MIS) of Directorate General of Health Services (DGHS). Expanded Program of Immunization (EPI) of DGHS collect surveillance data on EPI-related diseases. Disease Control unit, DGHS is responsible for implementing operational plan of disease surveillance system of IEDCR. The surveillance system maintain strategic collaboration with icddrr,b.MethodsThe IEDCR is conducting disease surveillance in several methods and following several systems. Surveillance data of priority communicable disease are collected by web based integrated disease surveillance. It is based on weekly data received from upazilla (sub-district) health complex on communicable disease marked as priority. They are: acute watery diarrhea, bloody dysentery, malaria, kala-azar, tuberculosis, leprosy, encephalitis, any unknown disease. Government health facilities at upazilla (sub-district) send the data using DHIS2. During outbreak, daily, even hourly reporting is sought from the concerned unit.Moreover, IEDCR conducts disease specific specialized surveillance systems. Data from community as well as from health facilities are collected for Influenza, nipah, dengue, HIV, cholera, cutaneous anthrax, non-communicable diseases, food borne illness. Data from health facilities are collected for antimicrobial resistance, rotavirus and intussusception, reproductive health, child health and mortality, post MDA-surveillance for lymphatic filariasis transmission, molecular xenomonitoring for detection of residual Wucheria bancrofti, dengue (virological), emerging zoonotic disease threats in high-risk interfaces, leptospirosis, acute meningo-encephalitis syndrome (AMES) focused on Japanese encephalitis and nipah, unintentional acute pesticide poisoning among young children. Data for event based surveillance are collected from usual surveillance system as well as from dedicated hotlines (24/7) of IEDCR, media monitoring, and any informal reporting.Case detection is done by syndromic surveillance, laboratory diagnosed surveillance, media surveillance, hotline, cell phone-based surveillance. Dissemination of surveillance is done by website of IEDCR, periodic bulletins, seminar, conference etc. Line listing are done by rapid response teams working in the surveillance sites. Demographic information and short address are listed in the list along with clinical and epidemiological information. Initial cases are confirmed by laboratory test, if required from collaborative laboratory at US CDC (Atlanta). When the epidemiological trend is clear, then subsequent cases are detected by symptoms and rapid tests locally available.ResultsIn 2017, 26 incidents of disease outbreak were investigated by National Rapid Response Team (NRRT) of IEDCR. In the same year, 12 cases of outbreak of unknown disease was investigated by NRRT of IEDCR at different health facilities. Joint surveillance with animal health is being planned for detection and managing zoonotic disease outbreaks, following One Health principles. Department of Livestock, Ministry of Environment and icddrb are partners of the joint surveillance based on One Health principles.Disease Control unit of DGHS, district and upazilla health managers utilizes the disease surveillance data for public health management. They analyze also the surveillance data at their respective level to serve their purpose.ConclusionsA robust surveillance is necessary for assessing the public health situation and prompt notification of public health emergency. The system was introduced at IEDCR mainly for malaria and diarrhea control during establishment of this institute. Eventually the system was developed for communicable disease, and recently for non-communicable diseases. It is effectively used for managing public health emergencies. Notification and detection of public health emergency is mostly possible due to media surveillance.Data for syndromic surveillance for priority communicable diseases is often not sent timely and data quality is often compromised. Tertiary hospitals are yet to participate in the web based integrated disease surveillance system for priority communicable diseases. But they are part of specialized disease surveillances. Data from specialized surveillance with laboratory support is of high quality.Evaluation of the system by conducting research is recommended to improve the system. Specificity and sensitivity of case detection system should also be tested periodically.ReferencesCash, Richard A, Halder, Shantana R, Husain, Mushtuq, Islam, Md Sirajul, Mallick, Fuad H, May, Maria A, Rahman, Mahmudur, Rahman, M Aminur. Reducing the health effect of natural hazards in Bangladesh. Lancet, The, 2013, Volume 382, Issue 9910IEDCR. At the frontline of public health. updated 2013. www.iedcr.gov.bdAo TT, Rahman M et al. Low-Cost National Media-Based Surveillance System for Public Health Events, Bangladesh. Emerging Infectious Diseases. Vol 22, No 4. 2016.<www.iedcr.gov.bd> accessed on 1 Oct 2018. 


Sign in / Sign up

Export Citation Format

Share Document