Extension of physical scaling method and its application towards downscaling climate model based near surface air temperature

2016 ◽  
Vol 37 (8) ◽  
pp. 3353-3366 ◽  
Author(s):  
Abhishek Gaur ◽  
Slobodan P. Simonovic
2021 ◽  
Author(s):  
Thordis Thorarinsdottir ◽  
Jana Sillmann ◽  
Marion Haugen ◽  
Nadine Gissibl ◽  
Marit Sandstad

<p>Reliable projections of extremes in near-surface air temperature (SAT) by climate models become more and more important as global warming is leading to significant increases in the hottest days and decreases in coldest nights around the world with considerable impacts on various sectors, such as agriculture, health and tourism.</p><p>Climate model evaluation has traditionally been performed by comparing summary statistics that are derived from simulated model output and corresponding observed quantities using, for instance, the root mean squared error (RMSE) or mean bias as also used in the model evaluation chapter of the fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Both RMSE and mean bias compare averages over time and/or space, ignoring the variability, or the uncertainty, in the underlying values. Particularly when interested in the evaluation of climate extremes, climate models should be evaluated by comparing the probability distribution of model output to the corresponding distribution of observed data.</p><p>To address this shortcoming, we use the integrated quadratic distance (IQD) to compare distributions of simulated indices to the corresponding distributions from a data product. The IQD is the proper divergence associated with the proper continuous ranked probability score (CRPS) as it fulfills essential decision-theoretic properties for ranking competing models and testing equality in performance, while also assessing the full distribution.</p><p>The IQD is applied to evaluate CMIP5 and CMIP6 simulations of monthly maximum (TXx) and minimum near-surface air temperature (TNn) over the data-dense regions Europe and North America against both observational and reanalysis datasets. There is not a notable difference between the model generations CMIP5 and CMIP6 when the model simulations are compared against the observational dataset HadEX2. However, the CMIP6 models show a better agreement with the reanalysis ERA5 than CMIP5 models, with a few exceptions. Overall, the climate models show higher skill when compared against ERA5 than when compared against HadEX2. While the model rankings vary with region, season and index, the model evaluation is robust against changes in the grid resolution considered in the analysis.</p>


Climate ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 150
Author(s):  
Mohamed ElBessa ◽  
Saad Mesbah Abdelrahman ◽  
Kareem Tonbol ◽  
Mohamed Shaltout

The characteristics of near surface air temperature and wind field over the Southeastern Levantine (SEL) sub-basin during the period 1979–2018 were simulated. The simulation was carried out using a dynamical downscaling approach, which requires running a regional climate model system (RegCM-SVN6994) on the study domain, using lower-resolution climate data (i.e., the fifth generation of ECMWF atmospheric reanalysis of the global climate ERA5 datasets) as boundary conditions. The quality of the RegCM-SVN simulation was first verified by comparing its simulations with ERA5 for the studied region from 1979 to 2018, and then with the available five WMO weather stations from 2007 to 2018. The dynamical downscaling results proved that RegCM-SVN in its current configuration successfully simulated the observed surface air temperature and wind field. Moreover, RegCM-SVN was proved to provide similar or even better accuracy (during extreme events) than ERA5 in simulating both surface air temperature and wind speed. The simulated annual mean T2m by RegCM-SVN (from 1979 to 2018) was 20.9 °C, with a positive warming trend of 0.44 °C/decade over the study area. Moreover, the annual mean wind speed by RegCM-SVN was 4.17 m/s, demonstrating an annual negative trend of wind speed over 92% of the study area. Surface air temperatures over SEL mostly occurred within the range of 4–31 °C; however, surface wind speed rarely exceeded 10 m/s. During the study period, the seasonal features of T2m showed a general warming trend along the four seasons and showed a wind speed decreasing trend during spring and summer. The results of the RegCM-SVN simulation constitute useful information that could be utilized to fully describe the study area in terms of other atmospheric parameters.


2016 ◽  
Vol 9 (3) ◽  
pp. 1143-1152 ◽  
Author(s):  
Olivier Giot ◽  
Piet Termonia ◽  
Daan Degrauwe ◽  
Rozemien De Troch ◽  
Steven Caluwaerts ◽  
...  

Abstract. Using the regional climate model ALARO-0, the Royal Meteorological Institute of Belgium and Ghent University have performed two simulations of the past observed climate within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX). The ERA-Interim reanalysis was used to drive the model for the period 1979–2010 on the EURO-CORDEX domain with two horizontal resolutions, 0.11 and 0.44°. ALARO-0 is characterised by the new microphysics scheme 3MT, which allows for a better representation of convective precipitation. In Kotlarski et al. (2014) several metrics assessing the performance in representing seasonal mean near-surface air temperature and precipitation are defined and the corresponding scores are calculated for an ensemble of models for different regions and seasons for the period 1989–2008. Of special interest within this ensemble is the ARPEGE model by the Centre National de Recherches Météorologiques (CNRM), which shares a large amount of core code with ALARO-0. Results show that ALARO-0 is capable of representing the European climate in an acceptable way as most of the ALARO-0 scores lie within the existing ensemble. However, for near-surface air temperature, some large biases, which are often also found in the ARPEGE results, persist. For precipitation, on the other hand, the ALARO-0 model produces some of the best scores within the ensemble and no clear resemblance to ARPEGE is found, which is attributed to the inclusion of 3MT. Additionally, a jackknife procedure is applied to the ALARO-0 results in order to test whether the scores are robust, meaning independent of the period used to calculate them. Periods of 20 years are sampled from the 32-year simulation and used to construct the 95 % confidence interval for each score. For most scores, these intervals are very small compared to the total ensemble spread, implying that model differences in the scores are significant.


2010 ◽  
Vol 10 (13) ◽  
pp. 5999-6006 ◽  
Author(s):  
A. Jones ◽  
J. Haywood ◽  
O. Boucher ◽  
B. Kravitz ◽  
A. Robock

Abstract. We examine the response of the Met Office Hadley Centre's HadGEM2-AO climate model to simulated geoengineering by continuous injection of SO2 into the lower stratosphere, and compare the results with those from the Goddard Institute for Space Studies ModelE. Despite the differences between the models, we find a broadly similar geographic distribution of the response to geoengineering in both models in terms of near-surface air temperature and mean June–August precipitation. The simulations also suggest that significant changes in regional climate would be experienced even if geoengineering was successful in maintaining global-mean temperature near current values, and both models indicate rapid warming if geoengineering is not sustained.


2015 ◽  
Vol 8 (10) ◽  
pp. 8387-8409
Author(s):  
O. Giot ◽  
P. Termonia ◽  
D. Degrauwe ◽  
R. De Troch ◽  
S. Caluwaerts ◽  
...  

Abstract. Using the regional climate model ALARO-0 the Royal Meteorological Institute of Belgium has performed two simulations of the past observed climate within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX). The ERA-Interim reanalysis was used to drive the model for the period 1979–2010 on the EURO-CORDEX domain with two horizontal resolutions, 0.11 and 0.44 °. ALARO-0 is characterised by the new microphysics scheme 3MT, which allows for a better representation of convective precipitation. In Kotlarski et al. (2014) several metrics assessing the performance in representing seasonal mean near-surface air temperature and precipitation are defined and the corresponding scores are calculated for an ensemble of models for different regions and seasons for the period 1989–2008. Of special interest within this ensemble is the ARPEGE model by the Centre National de Recherches Météorologiques (CNRM), which shares a large amount of core code with ALARO-0. Results show that ALARO-0 is capable of representing the European climate in an acceptable way as most of the ALARO-0 scores lie within the existing ensemble. However, for near-surface air temperature some large biases, which are often also found in the ARPEGE results, persist. For precipitation, on the other hand, the ALARO-0 model produces some of the best scores within the ensemble and no clear resemblance to ARPEGE is found, which is attributed to the inclusion of 3MT. Additionally, a jackknife procedure is applied to the ALARO-0 results in order to test whether the scores are robust, by which we mean independent of the period used to calculate them. Periods of 20 years are sampled from the 32 year simulation and used to construct the 95 % confidence interval for each score. For most scores these intervals are very small compared to the total ensemble spread, implying that model differences in the scores are significant.


2014 ◽  
Vol 955-959 ◽  
pp. 3887-3892 ◽  
Author(s):  
Huang He Gu ◽  
Zhong Bo Yu ◽  
Ji Gan Wang

This study projects the future extreme climate changes over Huang-Huai-Hai (3H) region in China using a regional climate model (RegCM4). The RegCM4 performs well in “current” climate (1970-1999) simulations by compared with the available surface station data, focusing on near-surface air temperature and precipitation. Future climate changes are evaluated based on experiments driven by European-Hamburg general climate model (ECHAM5) in A1B future scenario (2070-2099). The results show that the annual temperature increase about 3.4 °C-4.2 °C and the annual precipitation increase about 5-15% in most of 3H region at the end of 21st century. The model predicts a generally less frost days, longer growing season, more hot days, no obvious change in heat wave duration index, larger maximum five-day rainfall, more heavy rain days, and larger daily rainfall intensity. The results indicate a higher risk of floods in the future warmer climate. In addition, the consecutive dry days in Huai River Basin will increase, indicating more serve drought and floods conditions in this region.


2007 ◽  
Vol 46 (10) ◽  
pp. 1587-1605 ◽  
Author(s):  
J-F. Miao ◽  
D. Chen ◽  
K. Borne

Abstract In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.


Author(s):  
Vidya Anderson ◽  
William A. Gough

AbstractThe application of green infrastructure presents an opportunity to mitigate rising temperatures using a multi-faceted ecosystems-based approach. A controlled field study in Toronto, Ontario, Canada, evaluates the impact of nature-based solutions on near surface air temperature regulation focusing on different applications of green infrastructure. A field campaign was undertaken over the course of two summers to measure the impact of green roofs, green walls, urban vegetation and forestry systems, and urban agriculture systems on near surface air temperature. This study demonstrates that multiple types of green infrastructure applications are beneficial in regulating near surface air temperature and are not limited to specific treatments. Widespread usage of green infrastructure could be a viable strategy to cool cities and improve urban climate.


2010 ◽  
Vol 17 (3) ◽  
pp. 269-272 ◽  
Author(s):  
S. Nicolay ◽  
G. Mabille ◽  
X. Fettweis ◽  
M. Erpicum

Abstract. Recently, new cycles, associated with periods of 30 and 43 months, respectively, have been observed by the authors in surface air temperature time series, using a wavelet-based methodology. Although many evidences attest the validity of this method applied to climatic data, no systematic study of its efficiency has been carried out. Here, we estimate confidence levels for this approach and show that the observed cycles are significant. Taking these cycles into consideration should prove helpful in increasing the accuracy of the climate model projections of climate change and weather forecast.


2013 ◽  
Vol 9 (3) ◽  
pp. 1111-1140 ◽  
Author(s):  
M. Eby ◽  
A. J. Weaver ◽  
K. Alexander ◽  
K. Zickfeld ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.


Sign in / Sign up

Export Citation Format

Share Document