Projected changes in temperature and precipitation extremes over the Silk Road Economic Belt regions by the Coupled Model Intercomparison Project Phase 5 multi-model ensembles

2018 ◽  
Vol 38 (11) ◽  
pp. 4077-4091 ◽  
Author(s):  
Tingting Han ◽  
Huopo Chen ◽  
Xin Hao ◽  
Huijun Wang
Author(s):  
Isaac Kwesi Nooni ◽  
Daniel Fiifi T. Hagan ◽  
Guojie Wang ◽  
Waheed Ullah ◽  
Jiao Lu ◽  
...  

The main goal of this study was to assess the interannual variations and spatial patterns of projected changes in simulated evapotranspiration (ET) in the 21st century over continental Africa based on the latest Shared Socioeconomic Pathways and the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) provided by the France Centre National de Recherches Météorologiques (CNRM-CM) model in the Sixth Phase of Coupled Model Intercomparison Project (CMIP6) framework. The projected spatial and temporal changes were computed for three time slices: 2020–2039 (near future), 2040–2069 (mid-century), and 2080–2099 (end-of-the-century), relative to the baseline period (1995–2014). The results show that the spatial pattern of the projected ET was not uniform and varied across the climate region and under the SSP-RCPs scenarios. Although the trends varied, they were statistically significant for all SSP-RCPs. The SSP5-8.5 and SSP3-7.0 projected higher ET seasonality than SSP1-2.6 and SSP2-4.5. In general, we suggest the need for modelers and forecasters to pay more attention to changes in the simulated ET and their impact on extreme events. The findings provide useful information for water resources managers to develop specific measures to mitigate extreme events in the regions most affected by possible changes in the region’s climate. However, readers are advised to treat the results with caution as they are based on a single GCM model. Further research on multi-model ensembles (as more models’ outputs become available) and possible key drivers may provide additional information on CMIP6 ET projections in the region.


2014 ◽  
Vol 18 (12) ◽  
pp. 1-17 ◽  
Author(s):  
Scott Curtis ◽  
Douglas W. Gamble ◽  
Jeff Popke

Abstract This study uses empirical models to examine the potential impact of climate change, based on a range of 100-yr phase 5 of the Coupled Model Intercomparison Project (CMIP5) projections, on crop water need in Jamaica. As expected, crop water need increases with rising temperature and decreasing precipitation, especially in May–July. Comparing the temperature and precipitation impacts on crop water need indicates that the 25th percentile of CMIP5 temperature change (moderate warming) yields a larger crop water deficit than the 75th percentile of CMIP5 precipitation change (wet winter and dry summer), but the 25th percentile of CMIP5 precipitation change (substantial drying) dominates the 75th percentile of CMIP5 temperature change (extreme warming). Over the annual cycle, the warming contributes to larger crop water deficits from November to April, while the drying has a greater influence from May to October. All experiments decrease crop suitability, with the largest impact from March to August.


2013 ◽  
Vol 40 (18) ◽  
pp. 4887-4892 ◽  
Author(s):  
Andrea Toreti ◽  
Philippe Naveau ◽  
Matteo Zampieri ◽  
Anne Schindler ◽  
Enrico Scoccimarro ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David C. Lafferty ◽  
Ryan L. Sriver ◽  
Iman Haqiqi ◽  
Thomas W. Hertel ◽  
Klaus Keller ◽  
...  

AbstractEfforts to understand and quantify how a changing climate can impact agriculture often rely on bias-corrected and downscaled climate information, making it important to quantify potential biases of this approach. Here, we use a multi-model ensemble of statistically bias-corrected and downscaled climate models, as well as the corresponding parent models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), to drive a statistical panel model of U.S. maize yields that incorporates season-wide measures of temperature and precipitation. We analyze uncertainty in annual yield hindcasts, finding that the CMIP5 models considerably overestimate historical yield variability while the bias-corrected and downscaled versions underestimate the largest weather-induced yield declines. We also find large differences in projected yields and other decision-relevant metrics throughout this century, leaving stakeholders with modeling choices that require navigating trade-offs in resolution, historical accuracy, and projection confidence.


2021 ◽  
Vol 38 (2) ◽  
pp. 317-328
Author(s):  
Jie Zhang ◽  
Tongwen Wu ◽  
Fang Zhang ◽  
Kalli Furtado ◽  
Xiaoge Xin ◽  
...  

AbstractBCC-ESM1 is the first version of the Beijing Climate Center’s Earth System Model, and is participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is the only CMIP6-endorsed MIP in which BCC-ESM1 is involved. All AerChemMIP experiments in priority 1 and seven experiments in priorities 2 and 3 have been conducted. The DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations have also been run as the entry card of CMIP6. The AerChemMIP outputs from BCC-ESM1 have been widely used in recent atmospheric chemistry studies. To facilitate the use of the BCC-ESM1 datasets, this study describes the experiment settings and summarizes the model outputs in detail. Preliminary evaluations of BCC-ESM1 are also presented, revealing that: the climate sensitivities of BCC-ESM1 are well within the likely ranges suggested by IPCC AR5; the spatial structures of annual mean surface air temperature and precipitation can be reasonably captured, despite some common precipitation biases as in CMIP5 and CMIP6 models; a spurious cooling bias from the 1960s to 1990s is evident in BCC-ESM1, as in most other ESMs; and the mean states of surface sulfate concentrations can also be reasonably reproduced, as well as their temporal evolution at regional scales. These datasets have been archived on the Earth System Grid Federation (ESGF) node for atmospheric chemistry studies.


2013 ◽  
Vol 26 (24) ◽  
pp. 9946-9959 ◽  
Author(s):  
K. J. Tory ◽  
S. S. Chand ◽  
J. L. McBride ◽  
H. Ye ◽  
R. A. Dare

Abstract Changes in tropical cyclone (TC) frequency under anthropogenic climate change are examined for 13 global models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), using the Okubo–Weiss–Zeta parameter (OWZP) TC-detection method developed by the authors in earlier papers. The method detects large-scale conditions within which TCs form. It was developed and tuned in atmospheric reanalysis data and then applied without change to the climate models to ensure model and detector independence. Changes in TC frequency are determined by comparing TC detections in the CMIP5 historical runs (1970–2000) with high emission scenario (representative concentration pathway 8.5) future runs (2070–2100). A number of the models project increases in frequency of higher-latitude tropical cyclones in the late twenty-first century. Inspection reveals that these high-latitude systems were subtropical in origin and are thus eliminated from the analysis using an objective classification technique. TC detections in 8 of the 13 models reproduce observed TC formation numbers and geographic distributions reasonably well, with annual numbers within ±50% of observations. TC detections in the remaining five models are particularly low in number (10%–28% of observed). The eight models with a reasonable TC climatology all project decreases in global TC frequency varying between 7% and 28%. Large intermodel and interbasin variations in magnitude and sign are present, with the greatest variations in the Northern Hemisphere basins. These results are consistent with results from earlier-generation climate models and thus confirm the robustness of coupled model projections of globally reduced TC frequency.


2014 ◽  
Vol 27 (17) ◽  
pp. 6591-6611 ◽  
Author(s):  
Botao Zhou ◽  
Qiuzi Han Wen ◽  
Ying Xu ◽  
Lianchun Song ◽  
Xuebin Zhang

Abstract This paper presents projected changes in temperature and precipitation extremes in China by the end of the twenty-first century based on the Coupled Model Intercomparison Project phase 5 (CMIP5) simulations. The temporal changes and their spatial patterns in the Expert Team on Climate Change Detection and Indices (ETCCDI) indices under the RCP4.5 and RCP8.5 emission scenarios are analyzed. Compared to the reference period 1986–2005, substantial changes are projected in temperature and precipitation extremes under both emission scenarios. These changes include a decrease in cold extremes, an increase in warm extremes, and an intensification of precipitation extremes. The intermodel spread in the projection increases with time, with wider spread under RCP8.5 than RCP4.5 for most indices, especially at the subregional scale. The difference in the projected changes under the two RCPs begins to emerge in the 2040s. Analyses based on the mixed-effects analysis of variance (ANOVA) model indicate that by the end of the twenty-first century, at the national scale, the dominant contributor to the projection uncertainty of most temperature-based indices, and some precipitation extremes [including maximum 1-day precipitation (RX1day) and maximum 5-day precipitation (RX5day), and total extremely wet day total amount (R95p)], is the difference in emission scenarios. By the end of the twenty-first century, model uncertainty is the dominant factor at the regional scale and for the other indices. Natural variability can also play very important role.


Sign in / Sign up

Export Citation Format

Share Document