scholarly journals The thermal state of the North Atlantic and macro‐circulation conditions in the Atlantic‐European sector, and changes in sunshine duration in Central Europe

Author(s):  
Andrzej A. Marsz ◽  
Dorota Matuszko ◽  
Anna StyszyŃska
2019 ◽  
Vol 60 (10) ◽  
pp. 1991-2024 ◽  
Author(s):  
M G Kopylova ◽  
E Tso ◽  
F Ma ◽  
J Liu ◽  
D G Pearson

Abstract We studied the petrography, mineralogy, thermobarometry and whole-rock chemistry of 120 peridotite and pyroxenite xenoliths collected from the 156–138 Ma Chidliak kimberlite province (Southern Baffin Island). Xenoliths from pipes CH-1, -6, -7 and -44 are divided into two garnet-bearing series, dunites–harzburgites–lherzolites and wehrlites–olivine pyroxenites. Both series show widely varying textures, from coarse to sheared, and textures of late formation of garnet and clinopyroxene. Some samples from the lherzolite series may contain spinel, whereas wehrlites may contain ilmenite. In CH-6, rare coarse samples of the lherzolite and wehrlite series were derived from P = 2·8 to 5·6 GPa, whereas predominant sheared and coarse samples of the lherzolite series coexist at P = 5·6–7·5 GPa. Kimberlites CH-1, -7, -44 sample mainly the deeper mantle, at P = 5·0–7·5 GPa, represented by coarse and sheared lherzolite and wehrlite series. The bulk of the pressure–temperature arrays defines a thermal state compatible with 35–39 mW m–2 surface heat flow, but a significant thermal disequilibrium was evident in the large isobaric thermal scatter, especially at depth, and in the low thermal gradients uncharacteristic of conduction. The whole-rock Si and Mg contents of the Chidliak xenoliths and their mineral chemistry reflect initial high levels of melt depletion typical of cratonic mantle and subsequent refertilization in Ca and Al. Unlike the more orthopyroxene-rich mantle of many other cratons, the Chidliak mantle is rich (∼83 vol%) in forsteritic olivine. We assign this to silicate–carbonate metasomatism, which triggered wehrlitization of the mantle. The Chidliak mantle resembles the Greenlandic part of the North Atlantic Craton, suggesting the former contiguous nature of their lithosphere before subsequent rifting into separate continental fragments. Another, more recent type of mantle metasomatism, which affected the Chidliak mantle, is characterized by elevated Ti in pyroxenes and garnet typical of all rock types from CH-1, -7 and -44. These metasomatic samples are largely absent from the CH-6 xenolith suite. The Ti imprint is most intense in xenoliths derived from depths equivalent to 5·5–6·5 GPa where it is associated with higher strain, the presence of sheared samples of the lherzolite series and higher temperatures varying isobarically by up to 200 °C. The horizontal scale of the thermal-metasomatic imprint is more ambiguous and could be as regional as tens of kilometers or as local as <1 km. The time-scale of this metasomatism relates to a conductive length-scale and could be as short as <1 Myr, shortly predating kimberlite formation. A complex protracted metasomatic history of the North Atlantic Craton reconstructed from Chidliak xenoliths matches emplacement patterns of deep CO2-rich and Ti-rich magmatism around the Labrador Sea prior to the craton rifting. The metasomatism may have played a pivotal role in thinning the North Atlantic Craton lithosphere adjacent to the Labrador Sea from ∼240 km in the Jurassic to ∼65 km in the Paleogene.


2017 ◽  
Vol 143 (708) ◽  
pp. 2960-2972 ◽  
Author(s):  
Erica Madonna ◽  
Camille Li ◽  
Christian M. Grams ◽  
Tim Woollings

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1622 ◽  
Author(s):  
Dariusz Wrzesiński ◽  
Andrzej A. Marsz ◽  
Anna Styszyńska ◽  
Leszek Sobkowiak

The purpose of this study is to find connections between the North Atlantic Thermohaline Circulation (NA THC), climate elements, such as cloud cover, precipitation, air temperature, sunshine duration, and relative humidity, and flow of rivers in Poland. The intensity of NA THC was characterized by the DG3L index, which was established to assess changes in the amount of heat transported by NA THC along with the transport of water to the Arctic. The paper explains and discusses the mechanism of impact of the NA THC changeability on the elements of the catchment water balance variability. The positive and negative phases of the DG3L index are strongly correlated with the heat anomalies in the upper layer of the North Atlantic waters. The obtained results show that changes of NA THC have significant impact on weather conditions and selected climate elements in Poland. Statistically significant positive correlations were found between the DG3L index and average annual air temperatures, particularly in April, July, and August, while negative between the DG3L index and the total cloud cover. Consequently, in the years with the positive values of the DG3L index, there are favorable conditions for the strong increase in evaporation and evapotranspiration from the ground surface. This has impact on flow of rivers in Poland, which shows considerable regional differences.


2017 ◽  
Vol 17 (2) ◽  
pp. 124-144 ◽  
Author(s):  
Zeineddine Nouaceur ◽  
Ovidiu Murărescu ◽  
George Murătoreanu

AbstractThe IPCC climate models predict, for the Central Europe, are for climate changes, being seen variability of temperature, with a growing trend of 1-2,5° C (with 1° C for alpine zone – Carpathians and 2-2,5° C for plains). Current observations in the Romanian plain are not consistent, with an existence of a multiannual variability of temperature and precipitations depending on cyclonal and anti-ciclonal activity. The research is based on calculation of reduced centered index, also the graphical chronological method in information processing (MGCTI) of „Bertin Matrix” type, to show current trends of the spatio-temporal variability of precipitation in the context of global climate change. These are in line with the movement of air masses in Europe in general, and implicitly in Romania, with particular regard to the southern region of the country where the Romanian Plain. The variability of short-term global climate is generally associated with coupling phases of oceanic and atmospheric phenomena including El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). While El Niño Southern Oscillation (ENSO) affects climate variability in the world, the North Atlantic Oscillation (NAO) is the climate model dominant in the North Atlantic region. The latter cyclic oscillation whose role is still under debate could explain the variability of rainfall in much of the, central Europe area, and support the hypothesis of a return of the rains marking the end of years of drought in Romanian plain. Faced with such great changes that today affect the central Europe region and given the complexity of spatial and temporal dimensions of the climatic signal, a more thorough research of causes and retroactions would allow for a better understanding of the mechanisms behind this new trend.


2021 ◽  
Author(s):  
Anna Maidens ◽  
Jeff R Knight ◽  
Adam A Scaife

<p>Many seasonal forecast systems show skill at monthly to seasonal timescales in predicting the winter North Atlantic Oscillation (NAO), the primary mode of variability in surface pressure over the North Atlantic and European sector.  This skill has practical benefit for prediction of winter conditions over Northern Europe, and arises from the representation of remote teleconnections within the prediction system, such as from the stratosphere or the tropical troposphere.  Despite skill in the NAO, most prediction systems have little skill in other patterns of North Atlantic winter circulation variability, such as East Atlantic Pattern (EAP – the second mode of regional winter surface pressure variability). This is despite the clear contribution that patterns such as the EAP make to European winter climate variability and their demonstrated role in the generation of extreme winter conditions.</p><p> </p><p>We examine the role of the tropical troposphere and extra-tropical stratosphere in driving North Atlantic and European winter circulation patterns, with a focus on teleconnections to the EAP.  We use relaxation experiments, in which a set of seasonal-length hindcasts are run with the atmospheric conditions within the relaxation region constrained to be similar to reanalysis.  These are then compared with an initialised, but otherwise freely evolving, hindcast set, and with reanalysis, in regions outside the relaxation region. The aim is to assess how better prediction of the relaxation regions would influence the skill in prediction of winter atmospheric circulation in the North Atlantic-European sector.</p><p> </p><p>We find that both regions play a role in influencing regional circulation. Tropical tropospheric relaxation in particular increases the reproduction of winter surface pressure anomalies. A key part of this improvement is in the EAP, which is very well reproduced. It is shown that forcing of the EAP occurs via propagating Rossby waves linked to convective anomalies in the tropical Atlantic. In addition, we find that teleconnections from either the tropics or stratosphere lead to reproduction of observed large-scale surface pressure patterns in most winters.  In contrast, the diagnosed response to tropical forcing is rarely matched in the hindcast without relaxation, despite a similar rate of matches with the response to stratospheric forcing. This suggests that while winter stratospheric influences are well represented in the prediction system, tropical influences are under-represented.  The results suggest that the improvement of tropical Atlantic predictability could lead to improvements for European winter predictability, and should be an important focus for future work.</p>


2005 ◽  
Vol 24 (7-8) ◽  
pp. 809-822 ◽  
Author(s):  
C. Casty ◽  
D. Handorf ◽  
C. C. Raible ◽  
J. F. González-Rouco ◽  
A. Weisheimer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document