scholarly journals No effects of in vivo micro-CT radiation on structural parameters and bone marrow cells in proximal tibia of wistar rats detected after eight weekly scans

2007 ◽  
Vol 25 (10) ◽  
pp. 1325-1332 ◽  
Author(s):  
Julienne E.M. Brouwers ◽  
Bert van Rietbergen ◽  
Rik Huiskes
1999 ◽  
Vol 22 (3) ◽  
pp. 415-417 ◽  
Author(s):  
Lusânia M. Greggi Antunes ◽  
Joana D.C. Darin ◽  
Maria de Lourdes P. Bianchi

The ability of vitamin C (VC) to protect against the clastogenic action of the chemotherapeutic agent cisplatin (DDP, cis-diamminedichloroplatinun II) in rat bone marrow cells was evaluated. DDP was administered to Wistar rats either alone or after treatment with VC. The rats were treated with VC (50, 100 or 200 mg/kg body weight) by gavage 10 min before the administration of DDP (5 mg/kg body weight, ip) and then sacrificed 24 h after treatment. VC significantly reduced (by about 70%) the clastogenicity of DDP in rat bone marrow cells. The antioxidant action of VC presumably modulates the clastogenic action of DDP.


2006 ◽  
Vol 60 (1-2) ◽  
pp. 3-9
Author(s):  
Milan Kulic ◽  
Zoran Stanimirovic ◽  
Biljana Markovic ◽  
Sinisa Ristic

An experiment was performed under in vivo conditions on bone marrow cells of Wistar rats. The following doses of levamisole hydrochloride were tested: a therapeutic dose of 2.2 mg/kg bm, a dose of 4.4 mg/kg bm, LD50 -25% mg/kg bm, and LD50 -75% mg/kg bm. We followed the effect of levamisole hydrochloride on kinetics of the cell cycle and the appearance of structural and numeric changes in chromosomes in bone marrow cells. The therapeutic dose of levamisole of 2.2 mg/kg bm exhibited a capability to increase mitotic activity in the observed cells, thus confirming knowledge of the immunostimulative effect of this dose of the medicine under in vivo conditions. The other tested doses of levamisole in this experiment, observed in comparison with the control group, had an opposite effect, namely, they caused a reduction in the mitotic activity of bone marrow cells. All the examined doses in vivo exhibited the ability to induce numeric (aneuploid and polyploid) and structural (lesions, breaks and insertions) chromosomal aberrations. It can be concluded on the grounds of these findings that the examined doses have a genotoxic effect.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


1984 ◽  
Vol 26 (2) ◽  
pp. 152-157
Author(s):  
S. M. Singh ◽  
D. L. Reimer

Frequency of sister chromatid exchanges (SCE) were recorded separately for different chromosomes from bone marrow cells of female mice of the two genetic strains (C3H/S and C57BL/6J). SCEs were evaluated following different doses of 5-bromo-2′deoxyuridine (BrdU) as nine hourly i.p. injections. The SCE per cell increased with increasing BrdU doses which was slightly higher in C3H/S than in the C57BL/6J. SCEs per cell were variable at every treatment – strain combination, possibly reflecting the heterogeneous nature of the bone marrow cells. In general, there is a positive correlation between SCE per chromosome and the relative chromosome length. Total SCEs on one of the large chromosomes (most likely the X chromosome), however, are significantly higher than expected on the basis of relative length alone. Most of this increase is attributable to one of the homologues of this chromosome, which is not in synchrony with the rest of the chromosomes and may represent the late-replicating X. These results when viewed in the light of replication properties of the heterochromatinized X, suggest a direct involvement of DNA replication in SCE formation and may argue against the replication point as the sole site for the SCEs.Key words: sister chromatid exchange, BrdU, recombination, replication, X chromosome.


Blood ◽  
2013 ◽  
Vol 121 (12) ◽  
pp. e90-e97 ◽  
Author(s):  
Mark Wunderlich ◽  
Benjamin Mizukawa ◽  
Fu-Sheng Chou ◽  
Christina Sexton ◽  
Mahesh Shrestha ◽  
...  

Key Points A relevant xenograft chemotherapy model was developed by using standard AML induction therapy drugs and primary human AML patient samples. Human AML cells show significantly increased sensitivity to in vivo chemotherapy treatment compared with murine LSK and total bone marrow cells.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1633-1640
Author(s):  
LM Pelus ◽  
PS Gentile

Intravenous (IV) injection of 0.1 to 10 micrograms of authentic prostaglandin E2 (PGE2) in intact steady-state mice induces a population of bone marrow and spleen cells having the capacity to suppress CFU-GM proliferation when admixed with normal bone marrow cells. Equivalent suppression of CFU-GM committed to monocytic as well as granulocytic differentiation was observed using colony-stimulating factors (CSFs) differing in their lineage specificities and by direct morphological analysis of proliferating clones. Kinetic analysis indicates that suppressive bone marrow cells appear within 2 hours after PGE2 injection, are maximal at 6 hours, and are no longer observed by 24 hours postinjection. Positive and negative selection studies using monoclonal antibodies indicate that the PGE2-induced suppressor cells react positively with anti-GMA 1.2, MAC1, and F4/80 monoclonal antibodies, suggesting a myeloid/monocytic origin. As few as 1,000 positively selected bone marrow or spleen cells were able to inhibit maximally normal CFU-GM proliferation by 50,000 control bone marrow cells. Suppression of normal CFU-GM can be substituted for by 24- hour cell-free supernates from unseparated bone marrow cells or GMA 1.2 or F4/80 positively selected marrow or spleen cells from PGE2-treated but not control mice. These supernates also inhibited BFU-E proliferation. Injection of as few as 2 million bone marrow cells from PGE2-treated mice into steady-state mice or animals hematopoietically rebounding following a sublethal injection of cyclophosphamide significantly suppressed total CFU-GM proliferation in recipient mice within 6 hours. In summary, these studies describe the detection of a novel hematopoietic control network induced by PGE2 in intact mice.


Sign in / Sign up

Export Citation Format

Share Document