scholarly journals Combining a root exclusion technique with continuous chamber and porous tube measurements for a pin-point separation of ecosystem respiration in croplands

2017 ◽  
Vol 181 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Mathias Hoffmann ◽  
Stephan J. Wirth ◽  
Holger Beßler ◽  
Christof Engels ◽  
Hubert Jochheim ◽  
...  
Tellus B ◽  
2008 ◽  
Vol 60 (2) ◽  
Author(s):  
N. J. Shurpali ◽  
N. P. Hyvönen ◽  
J. T. Huttunen ◽  
C. Biasi ◽  
H. Nykänen ◽  
...  

2014 ◽  
Vol 21 (1) ◽  
pp. 363-376 ◽  
Author(s):  
Mirco Migliavacca ◽  
Markus Reichstein ◽  
Andrew D. Richardson ◽  
Miguel D. Mahecha ◽  
Edoardo Cremonese ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 212
Author(s):  
Jun-Lan Xiao ◽  
Feng Zeng ◽  
Qiu-Lan He ◽  
Yu-Xia Yao ◽  
Xiao Han ◽  
...  

Forests play a pivotal role in mitigating global warming as an important carbon sink. Recent global greening trends reflect a positive influence of elevated atmospheric CO2 on terrestrial carbon uptake. However, increasingly frequent and intense drought events endanger the carbon sequestration function of forests. This review integrates previous studies across scales to identify potential global trends in forest responses to drought and elevated CO2 as well as to identify data needs in this important research field. The inconsistent responses of ecosystem respiration to drought contributes to the change of forest net CO2 exchange, which depends on the balance of opposite effects of warming and water stress on respiration. Whether CO2 fertilization can offset the effects of drought remains controversial, however, we found a potential overestimation of global CO2 fertilization effects because of increasing water stress and other limitations such as light and nutrients (N, P) as well as the possibility of photosynthetic acclimation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Ciano ◽  
Massimiliano Ferrara ◽  
Meisam Babanezhad ◽  
Afrasyab Khan ◽  
Azam Marjani

AbstractThe heat transfer improvements by simultaneous usage of the nanofluids and metallic porous foams are still an attractive research area. The Computational fluid dynamics (CFD) methods are widely used for thermal and hydrodynamic investigations of the nanofluids flow inside the porous media. Almost all studies dedicated to the accurate prediction of the CFD approach. However, there are not sufficient investigations on the CFD approach optimization. The mesh increment in the CFD approach is one of the challenging concepts especially in turbulent flows and complex geometries. This study, for the first time, introduces a type of artificial intelligence algorithm (AIA) as a supplementary tool for helping the CFD. According to the idea of this study, the CFD simulation is done for a case with low mesh density. The artificial intelligence algorithm uses learns the CFD driven data. After the intelligence achievement, the AIA could predict the fluid parameters for the infinite number of nodes or dense mesh without any limitations. So, there is no need to solve the CFD models for further nodes. This study is specifically focused on the genetic algorithm-based fuzzy inference system (GAFIS) to predict the velocity profile of the water-based copper nanofluid turbulent flow in a porous tube. The most intelligent GAFIS could perform the most accurate prediction of the velocity. Hence, the intelligence of GAFIS is tested for different values of cluster influence range (CIR), squash factor(SF), accept ratio (AR) and reject ratio (RR), the population size (PS), and the percentage of crossover (PC). The maximum coefficient of determination (~ 0.97) was related to the PS of 30, the AR of 0.6, the PC of 0.4, CIR of 0.15, the SF 1.15, and the RR of 0.05. The GAFIS prediction of the fluid velocity was in great agreement with the CFD. In the most intelligent condition, the velocity profile predicted by GAFIS was similar to the CFD. The nodes increment from 537 to 7671 was made by the GAFIS. The new predictions of the GAFIS covered all CFD results.


2013 ◽  
Vol 56 ◽  
pp. 101-106 ◽  
Author(s):  
Jing Jiang ◽  
Ning Zong ◽  
Minghua Song ◽  
Peili Shi ◽  
Weiling Ma ◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 263-278 ◽  
Author(s):  
Ana López-Ballesteros ◽  
Cecilio Oyonarte ◽  
Andrew S. Kowalski ◽  
Penélope Serrano-Ortiz ◽  
Enrique P. Sánchez-Cañete ◽  
...  

Abstract. Currently, drylands occupy more than one-third of the global terrestrial surface and are recognized as areas vulnerable to land degradation. The concept of land degradation stems from the loss of an ecosystem's biological productivity due to long-term loss of natural vegetation or depletion of soil nutrients. Drylands' key role in the global carbon (C) balance has been recently demonstrated, but the effects of land degradation on C sequestration by these ecosystems still need to be investigated. In the present study, we compared net C and water vapor fluxes, together with satellite, meteorological and vadose zone (CO2, water content and temperature) measurements, between two nearby (∼ 23 km) experimental sites representing “natural” (i.e., site of reference) and “degraded” grazed semiarid grasslands. We utilized data acquired over 6 years from two eddy covariance stations located in southeastern Spain with highly variable precipitation magnitude and distribution. Results show a striking difference in the annual C balances with an average net CO2 exchange of 196 ± 40 (C release) and −23 ± 2 g C m−2 yr−1 (C fixation) for the degraded and natural sites, respectively. At the seasonal scale, differing patterns in net CO2 fluxes were detected over both growing and dry seasons. As expected, during the growing seasons, greater net C uptake over longer periods was observed at the natural site. However, a much greater net C release, probably derived from subterranean ventilation, was measured at the degraded site during drought periods. After subtracting the nonbiological CO2 flux from net CO2 exchange, flux partitioning results point out that, during the 6 years of study, gross primary production, ecosystem respiration and water use efficiency were, on average, 9, 2 and 10 times higher, respectively, at the natural site versus the degraded site. We also tested differences in all monitored meteorological and soil variables and CO2 at 1.50 m belowground was the variable showing the greatest intersite difference, with ∼ 1000 ppm higher at the degraded site. Thus, we believe that subterranean ventilation of this vadose zone CO2, previously observed at both sites, partly drives the differences in C dynamics between them, especially during the dry season. It may be due to enhanced subsoil–atmosphere interconnectivity at the degraded site.


Soil Science ◽  
1952 ◽  
Vol 73 (3) ◽  
pp. 211-220 ◽  
Author(s):  
RAY B. KRONE ◽  
H. F. LUDWIG ◽  
JEROME F. THOMAS

2013 ◽  
Vol 20 (4) ◽  
pp. 1191-1210 ◽  
Author(s):  
Jonas Jägermeyr ◽  
Dieter Gerten ◽  
Wolfgang Lucht ◽  
Patrick Hostert ◽  
Mirco Migliavacca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document