Bilayer to micelle transition of DMPC and alcohol ethoxylate surfactants as studied by isoperibol calorimetry

2005 ◽  
Vol 94 (8) ◽  
pp. 1747-1755 ◽  
Author(s):  
Leticia Barriocanal ◽  
Kevin M.G. Taylor ◽  
Graham Buckton
2021 ◽  
Author(s):  
Chunli Li ◽  
Zhiwei David Yue ◽  
Xiaohong Tian ◽  
John Hazlewood

Abstract Humic acids, one major type of organic foulants in steam assisted gravity drainage (SAGD) produced water, can precipitate on surface and downhole equipment in SAGD facilities, resulting in high cleaning costs, potential equipment damage and decrease of injectivity of disposal wells. In this paper, a cost-effective chemical solution is presented where an alcohol ethoxylate surfactant/chelating agent package can efficiently disperse the organic fouling molecules in SAGD produced water; therefore, the approach is expected to significantly mitigate the humic acid related fouling issues in the SAGD system. In this study, a variety of commercially available surfactant products were evaluated for their aids in well injectivity on humic acid molecules in the freshly obtained SAGD produced water. The lab testing filtration apparatus was specially designed to simulate the sandstone formation geology of SAGD disposal wells. An "efficiency factor" was defined to grade the dispersing performance of the surfactant and/or surfactant/chelating agent package in the lab filtration tests. The efficiency factor provides a reasonable estimation regarding how well the chemical can reduce the plugging risk in a disposal well as compared to the untreated produced water. Among all the surfactant products tested, an alcohol ethoxylate surfactant with the appropriate molecular structure shows distinguished dispersing performance on humic acids in SAGD produced water. However, the surfactant alone was found inconsistent in the dispersing performance when different batches of the produced water were involved. Inclusion of the specific metal chelating agents to the above surfactant formulation improved the dispersing performance consistency. The chelator molecules presumably help destroy the intermolecular bridges among humic acid molecules in the SAGD produced water; thereby, increasing the dispersing effectiveness of the alcohol ethyoxylate surfactants. Tests show that the efficiency factor of the surfactant/chelating agent package is higher than 8, which implies that the formulation could lead to eight times extension of the interval between workovers on SAGD disposal wells, a significant reduction for the operational downtime and costs. This study presented a cost-effective chemical solution to help disperse the humic acid molecules in SAGD produced water, which can help significantly reduce the fouling risk caused by organic foulants, improve injectivity and extend the intervals between workovers of SAGD disposal wells.


Plant Disease ◽  
2017 ◽  
Vol 101 (9) ◽  
pp. 1652-1658 ◽  
Author(s):  
Carol A. Rolando ◽  
Robyn E. Gaskin ◽  
Stefan F. Gous ◽  
David B. Horgan ◽  
Laura G. Raymond

The aim of this investigation was to determine the effect of dose and adjuvant on uptake of two phosphite products (Phos-A and Phos-B) into Pinus radiata needles. In experiment 1, uptake of 6 kg ha−1 phosphite, applied as Phos-A, in 100 liters of water, together with an organosilicone superspreader (0.2%), was high (>60%). Uptake at doses greater than 6 kg ha−1 (12, 15, 18, and 24 kg ha−1) and applied in volumes less than 100 liters of water (75 and 50 liters) was poor (1 to 30%). Using stability tests and NMR spectroscopy in experiment 2, this appeared to be linked to a concentration dependent reaction resulting in the degradation of the organosilicone adjuvant that facilitated uptake of Phos-A. In experiment 3, uptake of phosphite applied as Phos-B, between 6 and 24 kg ha−1 in 100 liters of water, was tested alone and with four adjuvants (an organosilicone, alcohol ethoxylate, lecithin, and esterified seed oil). Uptake of Phos-B without any adjuvant was high (>50%) across all doses, indicating the formulation was optimized for P. radiata needles. Uptake of Phos-B increased with concentration up to 72% at 24 kg ha−1 in 100 liters of water. Symptoms of phytotoxicity were observed at rates of ≥12 kg ha−1. This study highlighted the effect of formulation, dose, concentration, and adjuvant on the uptake of phosphite into P. radiata needles.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 125-130 ◽  
Author(s):  
J. P. Salanitro ◽  
G. C. Langston ◽  
P. B. Dorn ◽  
L. Kravetz

The primary degradation of a linear alcohol ethoxylate (AE) and a branched nonylphenol ethoxylate (NPE) was investigated in bench-scale activated sludge units treating a synthetic sewage feed. Biotreaters were gradually adapted to 10-100 mg/ℓ surfactant and effluents monitored for loss of nonionic ethoxylate, foaming, feed BOD removal, nitrification and biosolids growth. Both surfactants were degraded at influent doses of 10-40 mg/ℓ. Substantial BOD breakthrough, loss of nitrification, aerator foaming and incomplete removal of the NPE surfactant occurred when fed at 80 and 100 mg/ℓ while the unit treating AE was unaffected by high surfactant levels. Comparative aquatic toxicity of the biotreated waste at high surfactant levels indicated that the NPE effluent was acutely toxic (EC50, 7-15% effluent) to the fathead minnow and Daphnia while that of the AE unit was non-toxic (EC50, > 100% effluent) to these same species. These studies indicate that the treatment of wastes containing high levels of NPE ethoxylates may adversely impact an activated sludge process in incomplete degradation and foaming, impaired BOD removal, loss in nitrification and the formation of toxic effluents. AE surfactants, however, undergo extensive microbial degradation and cause little or no impact on the activated sludge treatment process.


1995 ◽  
Vol 31 (7) ◽  
pp. 321-328 ◽  
Author(s):  
E. Matthijs ◽  
G. Debaere ◽  
N. Itrich ◽  
P. Masscheleyn ◽  
A. Rottiers ◽  
...  

The fate of detergent surfactants in the sewer can be studied both in laboratory tests and in field experiments. The laboratory studies can be used to determine the rate of disappearance of a test molecule as a function of residence time and estimate its half-life in a given habitat. In addition, important information can be obtained on the mechanism of degradation. Field studies can determine the actual environmental concentrations of surfactants in raw sewage which can then be compared with the expected concentration based on consumption volumes. The difference between the measured and predicted concentration provides an estimate for the disappearance of the test chemical during its travel in the sewer and confirms the results of the laboratory tests. This paper focuses on the fate of a number of important representative anionic, nonionic and cationic surfactants, in the sewer. The results of laboratory die-away studies showed that, in general, the half-life for disappearance in the sewer was in the order of hours for Fatty Alcohol Ethoxylate (AE), Fatty Alcohol Ethoxy Sulphate (AES) and Di-Ethyl-Ester Di-methyl-Ammonium Chloride (DEEDMAC). These laboratory findings for AES were confirmed by monitoring actual raw sewage reaching municipal sewage treatment plants. In addition, a field study demonstrated that the concentration of glucose amides (GA) is considerably reduced during its travel in the sewer. These complementary laboratory and field studies provide key information for the safety assessment of surfactants. They demonstrate that the concentration of surfactants can be significantly reduced in the sewer resulting in a rapid reduction of the environmental loading, which is particularly important in environmental situations where inadequate or no sewage treatment exists.


2013 ◽  
Vol 463-464 ◽  
pp. 600-610 ◽  
Author(s):  
Hans Sanderson ◽  
Remi van Compernolle ◽  
Scott D. Dyer ◽  
Bradford B. Price ◽  
Allen M. Nielsen ◽  
...  

2013 ◽  
Vol 27 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Muhammad Mansoor Javaid ◽  
Asif Tanveer

Field studies were conducted to evaluate POST herbicides with adjuvants for the control of three-cornered jack in winter wheat. The herbicides evaluated were fluroxypyr 9.7% w/w + MCPA 38.8% w/w (formulated mixture [450 g ai ha−1]), carfentrazone-ethyl (20 g ai ha−1), bromoxynil 26.8% w/w + MCPA 40.0% w/w (formulated mixture [450 g ai ha−1]), thifensulfuron-methyl (75 g ai ha−1), and tribenuron-methyl (75 g ai ha−1), applied alone or tank mixed with the adjuvants alkyl ether sulfate sodium salt (625 mL ha−1) or fatty alcohol ethoxylate (375 mL ha−1). The addition of adjuvants to carfentrazone-ethyl resulted in > 94% control of three-cornered jack. Both adjuvants enhanced the efficacy of all herbicides for control of three-cornered jack, except thifensulfuron-methyl. However, a maximum increase in phytotoxicity on three-cornered jack was achieved with the addition of either adjuvant to tribenuron-methyl compared with herbicides used alone. Bromoxynil + MCPA and carfentrazone-ethyl gave maximum wheat yield and yield components.


2000 ◽  
Vol 66 (7) ◽  
pp. 2959-2964 ◽  
Author(s):  
Gregory M. Colores ◽  
Richard E. Macur ◽  
David M. Ward ◽  
William P. Inskeep

ABSTRACT We analyzed the impact of surfactant addition on hydrocarbon mineralization kinetics and the associated population shifts of hydrocarbon-degrading microorganisms in soil. A mixture of radiolabeled hexadecane and phenanthrene was added to batch soil vessels. Witconol SN70 (a nonionic, alcohol ethoxylate) was added in concentrations that bracketed the critical micelle concentration (CMC) in soil (CMC′) (determined to be 13 mg g−1). Addition of the surfactant at a concentration below the CMC′ (2 mg g−1) did not affect the mineralization rates of either hydrocarbon. However, when surfactant was added at a concentration approaching the CMC′ (10 mg g−1), hexadecane mineralization was delayed and phenanthrene mineralization was completely inhibited. Addition of surfactant at concentrations above the CMC′ (40 mg g−1) completely inhibited mineralization of both phenanthrene and hexadecane. Denaturing gradient gel electrophoresis of 16S rRNA gene segments showed that hydrocarbon amendment stimulatedRhodococcus and Nocardia populations that were displaced by Pseudomonas and Alcaligenespopulations at elevated surfactant levels. Parallel cultivation studies revealed that the Rhodococcus population can utilize hexadecane and that the Pseudomonas andAlcaligenes populations can utilize both Witconol SN70 and hexadecane for growth. The results suggest that surfactant applications necessary to achieve the CMC alter the microbial populations responsible for hydrocarbon mineralization.


2020 ◽  
Vol 59 (40) ◽  
pp. 18307-18317
Author(s):  
Dereje Kebebew Debeli ◽  
Chao Lin ◽  
Destaw Bayabil Mekbib ◽  
Liuyun Hu ◽  
Jianjun Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document