scholarly journals Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin

Author(s):  
Matthew J. Styles ◽  
Rebeca S. Rodriguez ◽  
Victoria M. Szlag ◽  
Samuel Bryson ◽  
Zhe Gao ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1288
Author(s):  
Thi Thuy Nguyen ◽  
Fayna Mammeri ◽  
Souad Ammar ◽  
Thi Bich Ngoc Nguyen ◽  
Trong Nghia Nguyen ◽  
...  

The formation of silver nanopetal-Fe3O4 poly-nanocrystals assemblies and the use of the resulting hetero-nanostructures as active substrates for Surface Enhanced Raman Spectroscopy (SERS) application are here reported. In practice, about 180 nm sized polyol-made Fe3O4 spheres, constituted by 10 nm sized crystals, were functionalized by (3-aminopropyl)triethoxysilane (APTES) to become positively charged, which can then electrostatically interact with negatively charged silver seeds. Silver petals were formed by seed-mediated growth in presence of Ag+ cations and self-assembly, using L-ascorbic acid (L-AA) and polyvinyl pyrrolidone (PVP) as mid-reducing and stabilizing agents, respectively. The resulting plasmonic structure provides a rough surface with plenty of hot spots able to locally enhance significantly any applied electrical field. Additionally, they exhibited a high enough saturation magnetization with Ms = 9.7 emu g−1 to be reversibly collected by an external magnetic field, which shortened the detection time. The plasmonic property makes the engineered Fe3O4-Ag architectures particularly valuable for magnetically assisted ultra-sensitive SERS sensing. This was unambiguously established through the successful detection, in water, of traces, (down to 10−10 M) of Rhodamine 6G (R6G), at room temperature.


RSC Advances ◽  
2021 ◽  
Vol 11 (44) ◽  
pp. 27152-27159
Author(s):  
Li Wang ◽  
Jian Huang ◽  
Mei-Juan Su ◽  
Jin-Di Wu ◽  
Weisheng Liu

The Si nanograss arrays are directly grown on Si substrate via catalyst-assisted VLS growth and subsequent plasma interaction. AgNPs were rapidly immobilized on Si nanograss arrays for SERS sensing, without any organic reagents and additives.


1990 ◽  
Vol 36 (3) ◽  
pp. 183-192 ◽  
Author(s):  
A. R. Hardham ◽  
E. Suzaki

Glycoconjugates on the surface of zoospores and cysts of the pathogenic fungus Phytophthora cinnamomi have been studied using fluorescein isothiocyanate labelled lectins for fluorescence microscopy and flow cytometry, and ferritin- and gold-labelled lectins for ultrastructural analysis. Of the five lectins used, only concanavalin A (ConA) binds to the surface of the zoospores, including the flagella and water expulsion vacuole. This suggests that of accessible saccharides, glucosyl or mannosyl residues predominate on the outer surface of the zoospore plasma membrane. Early in encystment, a system of flat disc-like cisternae, which underlie the zoospore plasma membrane, vesiculate. These and other small peripheral vesicles quickly disappear. After the induction of encystment, ConA is no longer localised close to the plasma membrane but binds to material loosely associated with the cell surface. Quantitative measurements by flow cytometry indicate that the ConA-binding material is gradually lost from the cell surface. The cyst wall is weakly labelled, but the site of germ tube emergence stains intensely. During the first 2 min after the induction of encystment, material that binds soybean agglutinin, Helix pommatia agglutinin, and peanut agglutinin appears on the surface of the fungal cells. The distribution of this material, rich in galactosyl or N-acetyl-D-galactosaminosyl residues, is initially patchy, but by 5 min the material evenly coats most of the cell surface. Labelling of zoospores in which intracellular sites are accessible indicates that the soybean agglutinin binding material is stored in vesicles that lie beneath the plasma membrane. Quantitation of soybean agglutinin labelling shows that maximum binding occurs 2–3 min after the induction of encystment. Key words: cell surface, flow cytometry, lectins, pathogenic fungi, Phytophthora cinnamomi.


2021 ◽  
Vol 405 ◽  
pp. 124642
Author(s):  
Hao Liu ◽  
Yue Guo ◽  
Yunxin Wang ◽  
Huidan Zhang ◽  
Xiaowei Ma ◽  
...  

2021 ◽  
pp. 113109
Author(s):  
Olga Guselnikova ◽  
Hyunsoo Lim ◽  
Jongbeom Na ◽  
Miharu Eguchi ◽  
Hyun-Jong Kim ◽  
...  

Author(s):  
Pietro Strobbia ◽  
Vanesa Cupil-Garcia ◽  
Bridget M. Crawford ◽  
Yang Liu ◽  
Andrew M. Fales ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document