scholarly journals Analysis of the California list of pesticides, mycotoxins, and cannabinoids in chocolate using liquid chromatography and low‐pressure gas chromatography‐based platforms

Author(s):  
Nathaly Reyes‐Garces ◽  
Colton Myers
2020 ◽  
Vol 16 (8) ◽  
pp. 989-1019
Author(s):  
Habibur Rahman ◽  
S.K. Manirul Haque ◽  
Masoom Raza Siddiqui

Background: Schizophrenia is a severe mental illness that affects more than twenty-one million people throughout the world. Schizophrenia also causes early death. Schizophrenia and other related psychotic ailments are controlled by the prescription of antipsychotic drugs, which act by blocking certain chemical receptors in the brain and thus relieves the symptoms of psychotic disorder. These drugs are present in the different dosage forms in the market and provided in a certain amount as per the need of the patients. Objective: Since such medications treat mental disorders, it is very important to have a perfect and accurate dose so that the risk factor is not affected by a higher or lower dose, which is not sufficient for the treatment. For accurate assay of these kinds of drugs, different analytical methods were developed ranging from older spectrophotometric techniques to latest hyphenated methods. Results: The current review highlights the role of different analytical techniques that were employed in the determination and identification of antipsychotic drugs and their metabolites. Techniques such as spectrophotometry, fluorimetry, liquid chromatography, liquid chromatography-mass spectrometry, gas chromatography, and gas chromatography-mass spectrometry employed in the method development of such antipsychotic drugs were reported in the review. Different metabolites, identified using the hyphenated techniques, were also mentioned in the review. The synthesis pathways of few of the metabolites were mentioned. Conclusion: The review summarizes the analyses of different antipsychotic drugs and their metabolites. A brief introduction of illnesses and their symptoms and possible medications were highlighted. Synthesis pathways of the associated metabolites were also mentioned.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yun-Yan Xia ◽  
Qiao-Gen Zou ◽  
Yu-Fei Yang ◽  
Qian Sun ◽  
Cheng-Qun Han

Background: High-performance liquid chromatography (HPLC) method has been used to detect related impurities of perampanel. However, the detection of impurities is incomplete, and the limits of quantification and detection are high. A sensitive, reliable method is in badly to be developed and applied for impurity detection of perampanel bulk drug. Objective: Methodologies utilising HPLC and gas chromatography (GC) were established and validated for quantitative determination of perampanel and its related impurities (a total of 10 impurities including 2 genotoxic impurities). Methods: The separation was achieved on a Dikma Diamonsil C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.01 mol/L potassium dihydrogen phosphate solution (A) and acetonitrile (B) in gradient elution mode. The compound 2-bromopropane was determined on an Agilent DB-624 column (0.32 mm × 30 m, 1.8 μm) by electron capture detector (μ-ECD) with split injection ratio of 1:5 and proper gradient temperature program. Result: Both HPLC and GC methods were established and validated to be sensitive, accurate and robust according to International Council for Harmonization (ICH) guidelines. The methods developed were linear in the selected concentration range (R 2≥0.9944). The average recovery of all impurities was between 92.6% and 103.3%. The possible production mechanism of impurities during the synthesis and degradation processes of perampanel bulk drug was also discussed. Five impurities were analyzed by liquid chromatography–mass spectrometry (LC-MS). Moreover, two of them were simultaneously characterized by LC-MS, IR and NMR. Conclusion: The HPLC and GC methods were developed and optimized, which could be applied for quantitative detection of the impurities, and further stability study of perampanel.


2021 ◽  
pp. 146906672110002
Author(s):  
Andreas Lehner ◽  
Margaret Johnson ◽  
Alan Zimmerman ◽  
Justin Zyskowski ◽  
John Buchweitz

This report examines the feasibility of determination of Vitamin D3, D2 and their 25-hydroxy metabolites utilizing Gas Chromatography Tandem Mass Spectrometry (GC/MS/MS) as a potential alternative to popular Liquid Chromatography Tandem Mass Spectrometric (LC/MS/MS) methodologies. The GC/MS/MS approach was found to operate reasonably well despite long-standing concerns that gas-liquid chromatography of vitamin D compounds invoke thermal rearrangements owing to the relatively high inlet and capillary column temperatures used. The workup procedure involved incubation of feed samples with concentrated potassium hydroxide for overnight fat saponification, extraction of D Vitamins in n-hexane and reaction with N,O-bis(trimethylsilyl)trifluoroacetamide at 70 °C for 30 mins. In addition to parent compounds, small amounts of pyro-, isopyro-, and iso-vitamin D and isotachysterol3 variants were obtained from each Vitamin D-related compound upon extraction and GC/MS/MS analysis. Mass spectral and chromatographic behavior of these compounds are herein described and interpreted. Multiple Reaction Monitoring settings on GC/MS/MS included m/z 456→351 for Vitamin D3 and m/z 486→363 for Vitamin D2. Trimethylsilylation enabled single predominant peaks for Vitamins D3 and D2, and sample workup in the presence of deuterated Vitamin D analogs enabled accurate and precise sensitivity to 1 ppb (ng/g) in feeds. The method could be extended with reasonable accuracy to 25-hydroxy (25OH) compounds, but accuracies would be significantly improved by inclusion of respective 25OH-specific deuterated internal standards. The method was applied to 27 submissions of suspect dog foods of which 22% were discovered elevated and 44% were discovered to contain toxic levels of Vitamin D3. The described method was thus discovered to provide a suitable mass spectrometric approach for Vitamin D, proving itself here specifically of value in detection of ergocalciferol and cholecalciferol in animal feeds. The specificity and sensitivity of the tandem quadrupole approach can enable suitable applicability to serum determination if desired.


Sign in / Sign up

Export Citation Format

Share Document