scholarly journals Energy transfer in master equation simulations: A new approach

2009 ◽  
Vol 41 (12) ◽  
pp. 748-763 ◽  
Author(s):  
John R. Barker
Author(s):  
Jae Hoon Kim ◽  
Leonid Lepnev ◽  
Valentina V. Utochnikova

Homo- and heteroligand mono-, bi-, and trimetallic lanthanide naphthoates EuxYbyGd1-x-y(naph)3(Phen)n (n = 0, 1) were obtained and thoroughly investigated. Homoligand naphthoates of the new phase were obtained as unhydrous powders...


2020 ◽  
Vol 234 (7-9) ◽  
pp. 1233-1250 ◽  
Author(s):  
Arrke J. Eskola ◽  
Mark A. Blitz ◽  
Michael J. Pilling ◽  
Paul W. Seakins ◽  
Robin J. Shannon

AbstractThe rate coefficient for the unimolecular decomposition of CH3OCH2, k1, has been measured in time-resolved experiments by monitoring the HCHO product. CH3OCH2 was rapidly and cleanly generated by 248 nm excimer photolysis of oxalyl chloride, (ClCO)2, in an excess of CH3OCH3, and an excimer pumped dye laser tuned to 353.16 nm was used to probe HCHO via laser induced fluorescence. k1(T,p) was measured over the ranges: 573–673 K and 0.1–4.3 × 1018 molecule cm−3 with a helium bath gas. In addition, some experiments were carried out with nitrogen as the bath gas. Ab initio calculations on CH3OCH2 decomposition were carried out and a transition-state for decomposition to CH3 and H2CO was identified. This information was used in a master equation rate calculation, using the MESMER code, where the zero-point-energy corrected barrier to reaction, ΔE0,1, and the energy transfer parameters, ⟨ΔEdown⟩ × Tn, were the adjusted parameters to best fit the experimental data, with helium as the buffer gas. The data were combined with earlier measurements by Loucks and Laidler (Can J. Chem.1967, 45, 2767), with dimethyl ether as the third body, reinterpreted using current literature for the rate coefficient for recombination of CH3OCH2. This analysis returned ΔE0,1 = (112.3 ± 0.6) kJ mol−1, and leads to $k_{1}^{\infty}(T)=2.9\times{10^{12}}$ (T/300)2.5 exp(−106.8 kJ mol−1/RT). Using this model, limited experiments with nitrogen as the bath gas allowed N2 energy transfer parameters to be identified and then further MESMER simulations were carried out, where N2 was the buffer gas, to generate k1(T,p) over a wide range of conditions: 300–1000 K and N2 = 1012–1025 molecule cm−3. The resulting k1(T,p) has been parameterized using a Troe-expression, so that they can be readily be incorporated into combustion models. In addition, k1(T,p) has been parametrized using PLOG for the buffer gases, He, CH3OCH3 and N2.


Author(s):  
Ildus Saetgalievich Nurgaliev

New approach to the measurements in agro-ecologic micrometeorology is suggested on the bases of renewable solar panels for energy supply to instruments at the remote sites and new turbulent model of the flow of the gases. Analytical dynamic model of the turbulent multi-component flow in the three-layer boundary system is presented. Turbulence is simulated by the non-zero vorticity, but not only. Other mathematical aspects of the turbulence are an introducing new model of the material point and considering a torsion of their trajectories. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flow. The flows in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers and space scales. The same models of mass and energy transfer are instrumental in simulation rural electrification concepts in general on the bases renewable sources.


1987 ◽  
Vol 42 (8) ◽  
pp. 813-818
Author(s):  
A. Kawski ◽  
J. Kamiński

A theory of the excitation energy transfer between like molecules in isotropic solution based on a centre or shell model of a primarily excited luminescent molecule and on the extended Förster “excitation master equation” has been elaborated. Fluorescence and phosphorescence depolarization are shown to be governed by singlet-singlet energy migration and described by the same expression. The comparison of the theoretical curve with the experimental data obtained by Gondo et al. (1975) for benzo[f]quinoline in ethanol glass at 77 K results in the following critical distance R0 for the excitation energy migration: 21.5 Å for fluorescence and phosphorescence, respectively.


2017 ◽  
Vol 5 (5) ◽  
pp. 1136-1148 ◽  
Author(s):  
Amreen A. Hussain ◽  
Arup R. Pal

A conceptually new approach to fabricate a robust ternary structure is introduced for light harvesting devices. An interesting photophysical mechanism of the ternary blend in a real device is highlighted where FRET strongly contributes to the performance enhancement of the device.


Sign in / Sign up

Export Citation Format

Share Document