Ploughing/zero‐tillage rotation regulates soil physicochemical properties and improves productivity of erodible soil in a residue return farming system

Author(s):  
Hao Wang ◽  
Shulan Wang ◽  
Qi Yu ◽  
Yujiao Zhang ◽  
Rui Wang ◽  
...  
2021 ◽  
Vol 6 (3) ◽  
pp. 313-319
Author(s):  
Issa Kaduyu ◽  
Patrick Musinguzi

This study evaluated the impact of irrigation and cropping on soil physicochemical properties at Kyekide small scale irrigation farm in Jinja district, eastern Uganda. Treatments included Land-use systems under perennial and annual cropping with and without irrigation for over 20 years. The hypothesis was that there were insignificant differences in physicochemical properties of the soil under irrigated and non-irrigated cropping systems. Soil physical properties except hydraulic conductivity was not significantly different with irrigation and cropping. The pH of the soils ranged from moderately acidic to neutral pH (5.17-7.40), with irrigated soils tending to be more neutral than non-irrigated soils. SOM content was higher in the irrigated soils and perennial soils than in the non-irrigated and annual soils. The soils were moderately deficient in N and severely deficient in P (mean values =0.175% N and 1.183mg kg-1 P) compared with the critical of 0.2% and 15 mg kg-1, respectively. Irrigated soils had a significantly higher Na+ content than non-irrigated soils, with a mean value of 2.985cmol/kg. The K+, Ca2+, and Mg2+ contents were higher in irrigated and perennial soils than non-irrigated and annual soils. The study suggested monitoring the soils under an irrigation scheme to prevent degradation due to increased salt accumulation or chemical fertility decline. Overall, monitoring of soil quality is vital in irrigation schemes to monitor the impacts of water on the environment.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105284
Author(s):  
Yafu Zhang ◽  
Jinman Wang ◽  
Yu Feng

2020 ◽  
Vol 112 (5) ◽  
pp. 4358-4372
Author(s):  
Meiqi Chen ◽  
Jisheng Xu ◽  
Zengqiang Li ◽  
Bingzi Zhao ◽  
Jiabao Zhang

2021 ◽  
Vol 10 (1) ◽  
pp. 3492-3500
Author(s):  
Vipin Y. Borole ◽  
◽  
Sonali B. Kulkarni ◽  

Soil properties may be varied by spatially and temporally with different agricultural practices. An accurate and reliable soil properties assessment is challenging issue in soil analysis. The soil properties assessment is very important for understanding the soil properties, nutrient management, influence of fertilizers and relation between soil properties which are affecting the plant growth. Conventional laboratory methods used to analyses soil properties are generally impractical because they are time-consuming, expensive and sometimes imprecise. On other hand, Visible and infrared spectroscopy can effectively characterize soil. Spectroscopic measurements are rapid, precise and inexpensive. Soil spectroscopy has shown to be a fast, cost-effective, environmentally friendly, non-destructive, reproducible and repeatable analytical technique. In the present research, we use spectroscopy techniques for soil properties analysis. The spectra of agglomerated farming soils were acquired by the ASD Field spec 4 spectroradiometer. Different fertilizers treatment applied soil samples are collected in pre monsoon and post monsoon season for 2 year (4 season) for banana and cotton crops in the form of DS-I and DS-II respectively. The soil spectra of VNIR region were preprocessed to get pure spectra. Then process the acquired spectral data by statistical methods for quantitative analysis of soil properties. The detected soil properties were carbon, Nitrogen, soil organic matter, pH, phosphorus, potassium, moisture sand, silt and clay. Soil pH is most important chemical properties that describe the relative acidity or alkalinity of the soil. It directly effect on plant growth and other soil properties. The relationship between pH properties on soil physical and chemical parameters and their influence were analyses by using linear regression model and show the performance of regression model with R2 and RMSE. Keywords soil; physicochemical properties; spectroscopy; pH


Sign in / Sign up

Export Citation Format

Share Document