scholarly journals Are compacted tramlines underestimated features in soil erosion modelling? A catchment‐scale analysis using a process‐based soil erosion model

Author(s):  
Philipp Saggau ◽  
Michael Kuhwald ◽  
Wolfgang Berengar Hamer ◽  
Rainer Duttmann

2018 ◽  
Vol 6 (3) ◽  
pp. 687-703 ◽  
Author(s):  
Joris P. C. Eekhout ◽  
Wilco Terink ◽  
Joris de Vente

Abstract. Assessing the impacts of environmental change on soil erosion and sediment yield at the large catchment scale remains one of the main challenges in soil erosion modelling studies. Here, we present a process-based soil erosion model, based on the integration of the Morgan–Morgan–Finney erosion model in a daily based hydrological model. The model overcomes many of the limitations of previous large-scale soil erosion models, as it includes a more complete representation of crucial processes like surface runoff generation, dynamic vegetation development, and sediment deposition, and runs at the catchment scale with a daily time step. This makes the model especially suited for the evaluation of the impacts of environmental change on soil erosion and sediment yield at regional scales and over decadal periods. The model was successfully applied in a large catchment in southeastern Spain. We demonstrate the model's capacity to perform impact assessments of environmental change scenarios, specifically simulating the scenario impacts of intra- and inter-annual variations in climate, land management, and vegetation development on soil erosion and sediment yield.



2020 ◽  
Author(s):  
Katy Wiltshire ◽  
Toby Waine ◽  
Bob Grabowski ◽  
Miriam Glendell ◽  
Steve Addy ◽  
...  

<p>Although fine-grained sediment (FGS) is a natural component of river systems, increased fluxes can impact FGS levels to such an extent they cause detrimental, irreversible changes in the way rivers function intensifying flood risk and negatively affecting water quality.</p><p>Previous catchment scale studies indicate there is no simple link between areas of sediment loss and the organic carbon (OC) load in waterways; areas with a high soil loss rate may not contribute most sediment to the rivers and areas that contribute the most sediment may not contribute the most OC. Anthropogenic and climate changes can accelerate soil erosion and the role of soil OC transported by erosional processes in the fluxes of C between land, water and atmosphere is still debated. Tracing sediment pathways, likely depositional areas and connections to streams leads to better assumptions about control processes and better estimation of OC fluxes.</p><p>In this innovative study OC fingerprinting of sediment reaching a catchment’s waterbodies is combined with OC stock and erosion modelling of the terrestrial catchment. Initial results show disconnect between catchment OC loss erosion modelling and fingerprinting results, which could be due to failure to model connectivity between the land and river channel. The current soil erosion model RUSLE (Revised Universal Soil Loss Equation) calculates only the spatial pattern of mean annual soil erosion rates. Using the WaTEM SEDEM model, which in includes routing (and possible en route deposition) of eroded sediments to river channels, we aim to determine the dominant source of OC within catchment streams by identification of both the land-use specific areas with the highest OC loss and the transport pathways between the sources and river channel.</p>



2019 ◽  
Vol 578 ◽  
pp. 124005 ◽  
Author(s):  
Jingya Cai ◽  
Zuhao Zhou ◽  
Jiajia Liu ◽  
Hao Wang ◽  
Yangwen Jia ◽  
...  




2018 ◽  
Author(s):  
Joris P. C. Eekhout ◽  
Wilco Terink ◽  
Joris de Vente

Abstract. Assessing the impacts of environmental change on soil erosion and sediment yield at the large catchment scale remains one of the main challenges in soil erosion modelling studies. Here, we present a process-based soil erosion model, based on the integration of the Morgan-Morgan-Finney erosion model in a daily-based hydrological model. The model overcomes many of the limitations of previous large-scale soil erosion models, as it includes a more complete representation of crucial processes like surface runoff generation, dynamic vegetation development, and sediment deposition, and runs at the catchment scale with a daily time step. This makes the model especially suited for evaluation of the impacts of environmental change on soil erosion and sediment yield at large spatial scales. The model was successfully applied in a large catchment in southeastern Spain. We demonstrate the models capacity to perform impact assessments of environmental change scenarios, specifically simulating the scenario impacts of intra- and inter-annual variations in climate, land management and vegetation development on soil erosion and sediment yield.





2004 ◽  
Vol 28 (3) ◽  
pp. 340-365 ◽  
Author(s):  
Richard Brazier

The role of erosion by water in the UK is considered. A summary of available data describing water erosion is presented providing insights into rates of erosion from the hillslope scale to the large catchment scale. Evidence suggests that soil erosion rates in excess of acceptable thresholds occur on a wide range of soils and under a wide range of land uses throughout the country. Given the recent shift towards erosion modelling and away from erosion monitoring, discussion of the quality of existing available observed data in the context of model evaluation is made. Much quality data exist in the UK to describe erosion by water, but it is argued here that few datasets provide the necessary detail with which to evaluate model performance accurately, especially when the description of the spatial heterogeneity of soil loss is a goal. Furthermore, the paradox between data collection (to improve models) and erosion modelling (to replace data collection) is highlighted as an issue that must be addressed within the discipline if full use of datasets and improvement of models is to be made.





2020 ◽  
Author(s):  
Lea Epple ◽  
Andreas Kaiser ◽  
Marcus Schindewolf ◽  
Anette Eltner

<p>Soil erosion is one of the most prominent environmental problems of major interest to a vast field of research. Due to the complexity, variability and discontinuity of erosional processes, erosion model approaches are non-transferable to different spatial and temporal scales.</p><p>The objective of our project is the across-scale modelling of soil erosion, using photogrammetric measurements and optimization methods as well as physical based model approaches. Present process-based models are only valid for the observation scale they are parametrized and validated for. In the observed reality phenomena therefore occur, which are not or only to some extent reproducible by complex model concepts (e.g. development of rills or concentrated runoff within driving lanes). We present the synergetic combination of a physically described model with highly redundant observations from photogrammetric data processing. This enables both the validation of the erosion model EROSION-3D as well as the optimization of its parameters and potentially advancement of the mathematical process description. The photogrammetric observations (RGB and thermal) offer the opportunity of a temporal and spatial differentiated process assessment (splash, sheet and rill erosion, as well as deposition and transport). To this purpose, the acquisition of the respective operating processes and contributing factors, will be nested defined at three different scales (micro plot, single slope and catchment scale) on two sites (loess soil and residual soil).</p><p>Flexible cross-scale applicable photogrammetric methods, considering 3D reconstruction and flow measurement, combined with physical-based methods of soil erosion modelling shall enable a better and reliable understanding of soil erosion processes on various spatial and temporal observation scales. Consequently, the implementation of the adjusted model is aimed for to enable a cross-scale description and validation of scale-dependent processes (e.g. discrete consideration of thin sheet flow and rill genesis) to offer new perspectives on both interconnectivity of sediment transport and relationship between event frequency and magnitude.</p>





Sign in / Sign up

Export Citation Format

Share Document