scholarly journals Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (central spanish pre-pyrenees)

2015 ◽  
Vol 41 (1) ◽  
pp. 127 ◽  
Author(s):  
M. López-Vicente ◽  
L. Quijano ◽  
L. Palazón ◽  
L. Gaspar ◽  
A. Navas

2018 ◽  
Vol 6 (3) ◽  
pp. 687-703 ◽  
Author(s):  
Joris P. C. Eekhout ◽  
Wilco Terink ◽  
Joris de Vente

Abstract. Assessing the impacts of environmental change on soil erosion and sediment yield at the large catchment scale remains one of the main challenges in soil erosion modelling studies. Here, we present a process-based soil erosion model, based on the integration of the Morgan–Morgan–Finney erosion model in a daily based hydrological model. The model overcomes many of the limitations of previous large-scale soil erosion models, as it includes a more complete representation of crucial processes like surface runoff generation, dynamic vegetation development, and sediment deposition, and runs at the catchment scale with a daily time step. This makes the model especially suited for the evaluation of the impacts of environmental change on soil erosion and sediment yield at regional scales and over decadal periods. The model was successfully applied in a large catchment in southeastern Spain. We demonstrate the model's capacity to perform impact assessments of environmental change scenarios, specifically simulating the scenario impacts of intra- and inter-annual variations in climate, land management, and vegetation development on soil erosion and sediment yield.



2019 ◽  
Vol 578 ◽  
pp. 124005 ◽  
Author(s):  
Jingya Cai ◽  
Zuhao Zhou ◽  
Jiajia Liu ◽  
Hao Wang ◽  
Yangwen Jia ◽  
...  




2018 ◽  
Author(s):  
Joris P. C. Eekhout ◽  
Wilco Terink ◽  
Joris de Vente

Abstract. Assessing the impacts of environmental change on soil erosion and sediment yield at the large catchment scale remains one of the main challenges in soil erosion modelling studies. Here, we present a process-based soil erosion model, based on the integration of the Morgan-Morgan-Finney erosion model in a daily-based hydrological model. The model overcomes many of the limitations of previous large-scale soil erosion models, as it includes a more complete representation of crucial processes like surface runoff generation, dynamic vegetation development, and sediment deposition, and runs at the catchment scale with a daily time step. This makes the model especially suited for evaluation of the impacts of environmental change on soil erosion and sediment yield at large spatial scales. The model was successfully applied in a large catchment in southeastern Spain. We demonstrate the models capacity to perform impact assessments of environmental change scenarios, specifically simulating the scenario impacts of intra- and inter-annual variations in climate, land management and vegetation development on soil erosion and sediment yield.



2020 ◽  
Author(s):  
Lea Epple ◽  
Andreas Kaiser ◽  
Marcus Schindewolf ◽  
Anette Eltner

<p>Soil erosion is one of the most prominent environmental problems of major interest to a vast field of research. Due to the complexity, variability and discontinuity of erosional processes, erosion model approaches are non-transferable to different spatial and temporal scales.</p><p>The objective of our project is the across-scale modelling of soil erosion, using photogrammetric measurements and optimization methods as well as physical based model approaches. Present process-based models are only valid for the observation scale they are parametrized and validated for. In the observed reality phenomena therefore occur, which are not or only to some extent reproducible by complex model concepts (e.g. development of rills or concentrated runoff within driving lanes). We present the synergetic combination of a physically described model with highly redundant observations from photogrammetric data processing. This enables both the validation of the erosion model EROSION-3D as well as the optimization of its parameters and potentially advancement of the mathematical process description. The photogrammetric observations (RGB and thermal) offer the opportunity of a temporal and spatial differentiated process assessment (splash, sheet and rill erosion, as well as deposition and transport). To this purpose, the acquisition of the respective operating processes and contributing factors, will be nested defined at three different scales (micro plot, single slope and catchment scale) on two sites (loess soil and residual soil).</p><p>Flexible cross-scale applicable photogrammetric methods, considering 3D reconstruction and flow measurement, combined with physical-based methods of soil erosion modelling shall enable a better and reliable understanding of soil erosion processes on various spatial and temporal observation scales. Consequently, the implementation of the adjusted model is aimed for to enable a cross-scale description and validation of scale-dependent processes (e.g. discrete consideration of thin sheet flow and rill genesis) to offer new perspectives on both interconnectivity of sediment transport and relationship between event frequency and magnitude.</p>



2021 ◽  
Author(s):  
Ivan Lizaga ◽  
Leticia Gaspar ◽  
Borja Latorre ◽  
Ana Navas

<p>Soil erosion and sediment delivery to rivers are important drivers for land degradation and environmental change in mountain agroecosystems.  These factors are especially severe in areas affected by intermittent heavy rainfalls after dry periods, and human practices such as deforestation or clearcutting practices. Many Mediterranean mountain environments underwent conversion of rangelands into croplands during the previous centuries increasing the risk of erosion. After land abandonment the process was gradually reversed during the middle of the 20<sup>th</sup><sub></sub>century, allowing the recovery of natural land cover and reduced soil erosion rates. To further control the high erosion rates, several afforestation programs introduced pine forests at the headwater of most Mediterranean mountain catchments transforming the landscape by terracing and reducing the sediment connectivity. However, nowadays, forests’ different management could lead to high erosion rates and subsequent landscape modifications. To understand the possible effect of these practices together with the current agricultural management, we have combined the strength of empirical data and spatially distributed modelling. Surface soil samples from different land uses were collected in a representative catchment at the foot of Santo Domingo range at the border of the central Ebro River valley. The study catchment was mostly cultivated at the beginning of the 19<sub>th</sub> century but changed to rangeland and pine afforestation in the last 50 years. The remaining croplands are predominated by rainfed agriculture that leaves soils mostly unprotected from June to January when erosive storms occur. The main land uses are croplands, pine afforestation, scrubland and Mediterranean forest.</p><p>In this study, we propose an ensemble technique composed of <sup>137</sup>Cs derived soil redistribution rates as specific point values and as a calibration tool for the widely used WaTEM/SEDEM sediment delivery model. Thus, by the use of ground truth and modelled data we aim to i) apply the WaTEM/SEDEM model at the catchment scale and calibrate it with <sup>137</sup>Cs derived soil redistribution rates for finding an optimal set of input parameters; ii) examine the effect of clearcutting and agricultural practices on the total erosion; iii) compare the modelled results with recently calculated sediment apportionments by using the sediment fingerprinting technique.</p><p>Our findings highlight the use of spatially distributed models combined with <sup>137</sup>Cs derived rates as a powerful tool to understand the driving factors of soil erosion in the last decades and to delineate the hotspot areas that could suffer high erosion if subjected to certain management practices.</p>







2014 ◽  
Vol 1 (1) ◽  
pp. 981-1012 ◽  
Author(s):  
L. M. Thomsen ◽  
J. E. M. Baartman ◽  
R. J. Barneveld ◽  
T. Starkloff ◽  
J. Stolte

Abstract. Quantification of soil roughness, i.e. the irregularities of the soil surface due to soil texture, aggregates, rock fragments and land management, is important as it affects surface storage, infiltration, overland flow and ultimately sediment detachment and erosion. Roughness has been measured in the field using both contact methods, such as roller chain and pinboard, and sensor methods, such as stereophotogrammetry and terrestrial laser scanning (TLS). A novel depth sensing technique, originating in the gaming industry, has recently become available for earth sciences; the Xtion Pro method. Roughness data obtained using various methods are assumed to be similar; this assumption is tested in this study by comparing five different methods to measure roughness in the field on 1 m2 agricultural plots with different management (ploughing, harrowing, forest and direct seeding on stubble) in southern Norway. Subsequently, the values were used as input for the LISEM soil erosion model to test their effect on the simulated hydrograph on catchment scale. Results show that statistically significant differences between the methods were obtained only for the fields with direct drilling on stubble; for the other land management types the methods were in agreement. The spatial resolution of the contact methods was much lower than for the sensor methods (10 000 versus at least 57 000 points per m2 respectively). In terms of costs and ease of handling in the field, the Xtion Pro method is promising. Results from the LISEM model indicate that especially the roller chain underestimated the RR values and the model thereby calculated less surface runoff than measured. In conclusion: the choice of measurement method for roughness data matters and depends on the required accuracy, resolution, mobility in the field and available budget. It is recommended to use only one method within one study.



Sign in / Sign up

Export Citation Format

Share Document