scholarly journals Elevated temperature relieves phosphorus limitation of marine unicellular diazotrophic cyanobacteria

2021 ◽  
Author(s):  
Lixia Deng ◽  
Shunyan Cheung ◽  
Chang‐Keun Kang ◽  
Kailin Liu ◽  
Xiaomin Xia ◽  
...  
2014 ◽  
Vol 11 (1) ◽  
pp. 1021-1051 ◽  
Author(s):  
A. C. Gerecht ◽  
L. Šupraha ◽  
B. Edvardsen ◽  
I. Probert ◽  
J. Henderiks

Abstract. Rising ocean temperatures will likely increase stratification of the water column and reduce nutrient input into the photic zone. This will increase the likelihood of nutrient limitation in marine microalgae, leading to changes in the abundance and composition of phytoplankton communities, which in turn will affect global biogeochemical cycles. Calcifying algae, such as coccolithophores, influence the carbon cycle by fixing CO2 into particulate organic carbon (POC) through photosynthesis and into particulate inorganic carbon (PIC) through calcification. As calcification produces a net release of CO2, the ratio of PIC / POC determines whether coccolithophores act as a source (PIC / POC > 1) or a sink (PIC / POC < 1) of atmospheric CO2. We studied the effect of phosphorus (P-) limitation and temperature stress on the physiology and PIC / POC ratios of two subspecies of Coccolithus pelagicus. This large and heavily calcified species (PIC / POC generally > 1.5) is a major contributor to calcite export from the photic zone into deep-sea reservoirs. Phosphorus limitation did not influence exponential growth rates in either subspecies, but P-limited cells had significantly lower cellular P-content. A 5 °C temperature increase did not affect exponential growth rates either, but nearly doubled cellular P-content under both high and low phosphate availability. The PIC / POC ratios did not differ between P-limited and nutrient-replete cultures, but at elevated temperature (from 10 to 15 °C) PIC / POC ratios decreased by 40–60%. Our results suggest that elevated temperature may intensify P-limitation due to a higher P-requirement to maintain growth and POC production rates, possibly reducing abundances in a warmer ocean. Under such a scenario C. pelagicus may decrease its calcification rate relative to photosynthesis, resulting in PIC / POC ratios < 1 and favouring CO2-sequestration over release. Phosphorus limitation by itself is unlikely to cause changes in the PIC / POC ratio in this species.


Author(s):  
G.J.C. Carpenter

In zirconium-hydrogen alloys, rapid cooling from an elevated temperature causes precipitation of the face-centred tetragonal (fct) phase, γZrH, in the form of needles, parallel to the close-packed <1120>zr directions (1). With low hydrogen concentrations, the hydride solvus is sufficiently low that zirconium atom diffusion cannot occur. For example, with 6 μg/g hydrogen, the solvus temperature is approximately 370 K (2), at which only the hydrogen diffuses readily. Shears are therefore necessary to produce the crystallographic transformation from hexagonal close-packed (hep) zirconium to fct hydride.The simplest mechanism for the transformation is the passage of Shockley partial dislocations having Burgers vectors (b) of the type 1/3<0110> on every second (0001)Zr plane. If the partial dislocations are in the form of loops with the same b, the crosssection of a hydride precipitate will be as shown in fig.1. A consequence of this type of transformation is that a cumulative shear, S, is produced that leads to a strain field in the surrounding zirconium matrix, as illustrated in fig.2a.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


2010 ◽  
Vol 6 (1) ◽  
pp. 40-43
Author(s):  
T. Seshadri Sekhar ◽  
◽  
P. Sravana ◽  
P. Srinivasa Rao ◽  
◽  
...  

Author(s):  
Fariz Aswan Ahmad Zakwan ◽  
◽  
Renga Rao Krishnamoorthy ◽  
Azmi Ibrahim ◽  
Ruqayyah Ismail ◽  
...  

Alloy Digest ◽  
1964 ◽  
Vol 13 (6) ◽  

Abstract UDIMET 41 is a vacuum induction melted precipitation hardening nickel-base alloy having outstanding room and elevated temperature properties. It possesses excellent corrosion and oxidation resistance. It is designed for highly stressed components operating in the 1400-1700 deg F temperature range. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on low and high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-92. Producer or source: Special Metals Inc..


Sign in / Sign up

Export Citation Format

Share Document