Laser-tissue soldering with biodegradable polymer films in vitro: Film surface morphology and hydration effects

2001 ◽  
Vol 28 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Brian S. Sorg ◽  
Ashley J. Welch
2007 ◽  
Vol 567-568 ◽  
pp. 253-256
Author(s):  
Regina Mikulíková ◽  
Kateřina Kolářová ◽  
Václav Švorčík ◽  
Barbora Dvořánková ◽  
Tomáš Sopuch

The properties of polyethylene doped with Ca2+ salt of oxidized cellulose was studied by different techniques. FTIR spectroscopy was used for the determination of crystalline phase in polymer film, surface wettability was determined by standard goniometry and surface morphology was examined by SEM microscopy. Adhesion of mouse 3T3 fibroblasts on the doped polymer was studied in vitro. It was found that the polyethylene doped with the cellulose derivative can be sterilized in boiling water. The number and homogeneity of adhering cells were shown to depend on the surface wettability and morphology.


2008 ◽  
Vol 108 (1) ◽  
pp. 659-664 ◽  
Author(s):  
Y. Ramgopal ◽  
S. S. Venkatraman ◽  
W. T. Godbey

2007 ◽  
Vol 539-543 ◽  
pp. 710-715
Author(s):  
Kotaro Kuroda ◽  
Ryoichi Ichino ◽  
Masazumi Okido

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.


2013 ◽  
Vol 1507 ◽  
Author(s):  
Ryosuke Yamauchi ◽  
Geng Tan ◽  
Daishi Shiojiri ◽  
Nobuo Tsuchimine ◽  
Koji Koyama ◽  
...  

ABSTRACTWe examined the influence of momentary annealing on the nanoscale surface morphology of NiO(111) epitaxial thin films deposited on atomically stepped sapphire (0001) substrates at room temperature in O2 at 1.3 × 10−3 and 1.3 × 10−6 Pa using a pulsed laser deposition (PLD) technique. The NiO films have atomically flat surfaces (RMS roughness: approximately 0.1–0.2 nm) reflecting the step-and-terrace structures of the substrates, regardless of the O2 deposition pressure. After rapid thermal annealing (RTA) of the NiO(111) epitaxial film deposited at 1.3 × 10−3 Pa O2, a periodic straight nanogroove array related to the atomic steps of the substrate was formed on the film surface for 60 s. In contrast, the fabrication of a transient state in the nanogroove array formation was achieved with RTA of less than 1 s. However, when the O2 atmosphere during PLD was 1.3 × 10−6 Pa, random crystal growth was observed and resulted in a disordered rough surface nanostructure after RTA.


2002 ◽  
Vol 74 (1) ◽  
pp. 123-125 ◽  
Author(s):  
D.M. Bubb ◽  
B. Toftmann ◽  
R.F. Haglund, ◽  
J.S. Horwitz ◽  
M.R. Papantonakis ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Irshadullah ◽  
Shefaat Ullah Shah ◽  
Muhammad Khalid Khan ◽  
Kifayat Ullah Shah ◽  
Barkat Ali Khan

Chitosan a poly-(D) glucosamine is a polysaccharide made by treating shrimp and other crustacean shells with the alkali sodium hydroxide. It is a hydrophilic polymer that helps to retain the drug inside the solid lipid nanoparticles (SLN’s) and prolongs the release of drug from the carrier system. The purpose of the study was to formulate Chitosan decorated SLN’s for the topical delivery of dexibuprofen by hot pressure homogenization technique. Blank SLN’s, drug loaded SLN’s and Chitosan decorated SLN’s were prepared. Particle size, zeta potential and PDI were determined. FTIR study was conducted to evaluate the compatibility of excipients with the active drug. Surface morphology of SLN’s was determined by field emission scanning electron microscope. Drug content and entrapment efficiency of SLN’s were determined using indirect method. In vitro release and ex vivo permeation study of SLN’s were carried out using Franz diffusion cell. The droplet size fell into the nano range i.e. 132±7 to 424±2 nm which is effective for topical drug delivery system. The PDI of formulations range from 0.21 to 0.42 which depicts the homogeneity of all the SLN’s formulations. Vibrational analysis indicates that there is no interaction between active drug and excipient used in the formulation. The surface morphology revealed the spherical shape of Chitosan decorated SLN’s. The in vitro release of formulations showed 79.91±1.07 to 89.94±1.8 % drug release. The drug permeation study showed high permeation of drug into the skin. The percent drug permeation ranges from 64.15±0.93 to 71.80±0.88% indicating good permeation of drug across the skin. Overall, SLN’s are an effective carrier for topical delivery of dexibuprofen and thus bypasses side effects associated with oral delivery.


Sign in / Sign up

Export Citation Format

Share Document