Influence of the Botanic Origin of Starch Nanocrystals on the Morphological and Mechanical Properties of Natural Rubber Nanocomposites

2012 ◽  
Vol 297 (10) ◽  
pp. 969-978 ◽  
Author(s):  
Déborah S. LeCorre ◽  
Julien Bras ◽  
Alain Dufresne
2010 ◽  
Vol 150-151 ◽  
pp. 762-765
Author(s):  
Ji Hu Wang ◽  
Hong Bo Liu ◽  
Shao Guo Wen ◽  
Yan Shen

Attapulgite (AT)/natural rubber (NR)/ styrene-butadiene rubber (SBR) nanocomposites have been prepared after attapulgite was modified by different coupling agent. The treatment of AT caused the adhesion between AT nanorods and the nature rubber/styrene-butadiene rubber was improved, which enhanced the tensile properties of the matrix. The tensile strength of composites attained 15.6 MPa after AT was modified by 3%wt Si-69 coupling with addition of 20 phr.


2014 ◽  
Vol 63 (9) ◽  
pp. 1674-1681 ◽  
Author(s):  
Wang Xing ◽  
Jinrong Wu ◽  
Guangsu Huang ◽  
Hui Li ◽  
Maozhu Tang ◽  
...  

2016 ◽  
Vol 153 ◽  
pp. 143-152 ◽  
Author(s):  
Wilson Pires Flauzino Neto ◽  
Marcos Mariano ◽  
Ingrid Souza Vieira da Silva ◽  
Hudson Alves Silvério ◽  
Jean-Luc Putaux ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jihu Wang ◽  
Dajun Chen

Natural rubber (NR) nanocomposites were prepared in a double-roller plasticator mixer with purified attapulgite (PAT) or modified attapulgite, which was treated at 450°C (PAT-450) and 850°C (PAT-850) for two hours. The structures of the pristine, purified, and modified attapulgite were characterized by FTIR, TEM, XRD, and BET. The results indicated that the structure of attapulgite changed with the increased temperature. The effects of the PAT treatment and content on the mechanical properties of the NR nanocomposites were also investigated. The results showed that AT increased curing process of natural rubber. A significant improvement in the tensile strength, wearability, and solvent resistance of the nanocomposites was observed with the addition of different types of attapulgite as compared to those of pure NR. Scanning electron microscope images showed that the filler was located at the interface, which induced compatibilization in the immiscible blends. Thermogravimetric analysis revealed a significant improvement in the thermal stability of the NR/PAT nanocomposites.


2014 ◽  
Vol 543-547 ◽  
pp. 3886-3891 ◽  
Author(s):  
Yang Jian Shu Gao ◽  
Sen Zhao ◽  
Shuang Quan Liao ◽  
Lin Fang ◽  
Zhi Fen Wang ◽  
...  

Starch nanocrystals obtained from acid hydrolysis, and the starch/natural rubber latex film was prepared by blending the starch nanocrystals with natural rubber latex. The latex properties such as viscosity and mechanical stability, water and toluene uptake, crosslinking density and mechanical properties of the latex films were investigated. The results showed that the mechanical stability of natural rubber latex reinforced by starch nanocrystals increased, but the change of viscosity was not obvious. By adding starch nanocrystals in natural rubber latex, the swelling by toluene decreases and the swelling by water increased. The mechanical properties and crosslinking density of films were enhanced with the increase of starch loading.


Author(s):  
Anyaporn Boonmahitthisud

Natural rubber (NR) is representative biomass polymer and the effective uses are strongly contributed to sustainable society. This chapter presents the innovative and advanced rubber nanocomposites with polystyrene-encapsulated silica nanohybrids (PS-nSiO2) subsequently used as a nanofiller for NR and NR/styrene butadiene rubber (NR/SBR). The PS-nSiO2 were prepared via ‘in situ' differential microemulsion polymerization. The core-shell nanohybrids of PS-nSiO2 were achieved with an average diameter of 40 nm using a smaller amount of surfactant, compared to microemulsion polymerization method. Moreover, the effects of the NR and NR/SBR filled with PS-nSiO2 nanohybrids on the mechanical properties, thermal stability, flammability and morphology are also discussed. The results indicated that the encapsulation of nSiO2 with PS can provide not only the well-dispersion of nanoparticles in the rubber matrix but also the synergistic properties of two components from the polymer and the inorganic nanoparticles by improving mechanical properties, thermal stability and flammability of rubber nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document