Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls

2016 ◽  
Vol 153 ◽  
pp. 143-152 ◽  
Author(s):  
Wilson Pires Flauzino Neto ◽  
Marcos Mariano ◽  
Ingrid Souza Vieira da Silva ◽  
Hudson Alves Silvério ◽  
Jean-Luc Putaux ◽  
...  
2021 ◽  
Author(s):  
Yaxiong Zhang ◽  
Erqing Xie

Carbon nanotubes (CNTs) have been widely studied as supercapacitor electrodes because of their excellent conductivity, high aspect ratio, excellent mechanical properties, chemical stability, and large specific surface area. However, the...


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5670
Author(s):  
Piera Alvarez ◽  
M. Ángeles Montealegre ◽  
Francisco Cordovilla ◽  
Ángel García-Beltrán ◽  
Ignacio Angulo ◽  
...  

The effect of process parameters and the orientation of the cladding layer on the mechanical properties of 316L stainless steel components manufactured by laser metal deposition (LMD) was investigated. High aspect-ratio walls were manufactured with layers of a 4.5 mm wide single-cladding track to study the microstructure and mechanical properties along the length and the height of the wall. Samples for the tensile test (according to ASTM E-8M-04) were machined from the wall along both the direction of the layers and the direction perpendicular to them. Cross-sections of the LMD samples were analyzed by optical and scanning electron microscopy (SEM). The orientation of the growing grain was observed. It was associated with the thermal gradient through the building part. A homogeneous microstructure between consecutive layers and some degree of microporosity was observed by SEM. Uniaxial tension tests were performed on samples extracted from the wall in perpendicular and parallel directions. Results for ultimate tensile strength were similar in both cases and with the wrought material. The σ0.2 were similar in both cases but slightly superior to the wrought material.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3067
Author(s):  
Shiuh-Chuan Her ◽  
Wei-Chun Hsu

In this work, buckypaper composed of multi-walled carbon nanotubes (MWCNT) was prepared through a vacuum filtration process. The effect of MWCNT aspect ratio on the buckypaper performance was investigated. The freestanding and highly flexible buckypaper can be used as a sensor to attach on a complex surface monitoring the strain and temperature at the critical area. The mechanical properties of the buckypaper were examined using the tensile and nanoindentation tests. The strain and temperature sensitivities of the buckypaper were evaluated through the four-point bending and thermal chamber tests, respectively. In addition, the microstructure and thermal stability of the buckypaper were studied by scanning electron microscopy (SEM) and thermogravimetric analyzer (TGA), respectively. Experimental results showed that the mechanical properties such as Young’s modulus, tensile strength, fracture strain, and hardness of the buckypaper made of high aspect ratio MWCNTs were significantly superior to the buckypaper consisted of low aspect ratio MWCNTs, while the strain and temperature sensitivities of the buckypaper composed of low aspect ratio MWCNTs were better than that of the buckypaper made of high aspect ratio MWCNTs.


1998 ◽  
Vol 518 ◽  
Author(s):  
L. S. Stephens ◽  
K.W. Kelly ◽  
E.I. Meletis ◽  
S. Simhadri

AbstractHigh aspect ratio microstructures (HARMs) with a height of hundreds of micrometers and a width of a few tens of micrometers present high promise in a number of challenging fields. At LSU, a number of applications are being developed in which nickel HARMs are electroplated on metal surfaces (mold insert fabrication for the LIGA process, HARMs on mechanical seal faces, HARMs on heat exchange surfaces, etc.). In some of these applications, the HARMs are subjected to high stresses and the mechanical properties are particularly important. These properties can be used to adjust processing parameters to optimize properties of the HARMS.This paper presents a method for measuring the strength properties of cantilevered nickel HARMs constructed by LIGA. Experimentally measured values are reported for modulus of rupture (1280 MPa), Young's modulus (153 GPa) and Knoop hardness (500 Hk) for HARMs with an overplated base. SEM micrographs clearly indicate that failure of the beams is brittle and most frequently occurs at the interface of the beam and overplated base.


2010 ◽  
Vol 150-151 ◽  
pp. 762-765
Author(s):  
Ji Hu Wang ◽  
Hong Bo Liu ◽  
Shao Guo Wen ◽  
Yan Shen

Attapulgite (AT)/natural rubber (NR)/ styrene-butadiene rubber (SBR) nanocomposites have been prepared after attapulgite was modified by different coupling agent. The treatment of AT caused the adhesion between AT nanorods and the nature rubber/styrene-butadiene rubber was improved, which enhanced the tensile properties of the matrix. The tensile strength of composites attained 15.6 MPa after AT was modified by 3%wt Si-69 coupling with addition of 20 phr.


2014 ◽  
Vol 63 (9) ◽  
pp. 1674-1681 ◽  
Author(s):  
Wang Xing ◽  
Jinrong Wu ◽  
Guangsu Huang ◽  
Hui Li ◽  
Maozhu Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document