Synthesis of Water-Soluble Oligomers From Imidazole, Ethyleneglycol Diglycidyl Ether, and Methacrylic Acid. An Insight Into the Chemical Structure, Aggregation Behavior and Formation of Hollow Spheres

2015 ◽  
Vol 301 (2) ◽  
pp. 167-181 ◽  
Author(s):  
Lucía V. Lombardo Lupano ◽  
Juan M. Lázaro-Martínez ◽  
Nora M. Vizioli ◽  
Dimas I. Torres ◽  
Viviana Campo Dall' Orto
2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S192-S193
Author(s):  
Marc A Thompson ◽  
Robert J Christy

Abstract Introduction Human-hair derived keratin (KOS) protein has been selected in this investigation for its ability to bind antibiotic compounds and provide sustained release while withstanding harsh proteolytic environments such as inflamed, damaged tissue. The need to control local flora has been recognized as an imperative for wound healing, as recovery is significantly hampered by infection. This study investigates the synthesis of KOS-based particulate matter, developed using acid-precipitation, to load and release the water-soluble antibiotic ciprofloxacin (CIP). We hypothesize that ionically bound CIP release is tied to the degradation of KOS, therefore, bacterial metabolism, which produces proteolytic enzymes, will trigger CIP release thereby creating a novel self-extinguishing delivery system for contaminated skin wounds. Methods Ciprofloxacin hydrochloride was solubilized in deionized water (pH 5.3) under constant stirring. Freeze-dried KOS powder was added for an ultimately 5% w/v and 0.8% w/v solution of KOS and CIP, respectively. To improve the stability of KOS a water-soluble diglycidyl ether crosslinker was added to solutions and stirred for 24 hours. CIP-loaded protein was precipitated out by a hydrochloric acid induced pH reduction. Samples were collected and frozen at -20 °C prior to lyophilization, thus forming the stable product. Degradation of KOS and commensurate release of CIP were measured using a bicinchoninic acid (BCA) assay and fluorescent measurements of hydrated material supernatant. The reduction of bacterial colonies was validated by a broth inhibition assay whereby CIP-loaded KOS or unloaded KOS controls where hydrated in bacterial-laden broth cultures of Pseudomonas aeruginosa or Methicillin-resistant Staphylococcus aureus. Cultures were sampled at 24, 48, or 72 hours and plated to quantify colony-forming units. Results The presence of CIP in the KOS protein was confirmed and release rates follow similar patterns to that of KOS degradation. CIP-loaded proteins significantly reduce bacterial colony presence in concentrated inoculant solutions up to 72 hours. Conclusions CIP release does appear to coincide with KOS degradation, which is bolstered in the presence of infectious levels of bacteria. Ongoing studies aim to observe more robust models of infection and more controlled antibiotic release.


Author(s):  
Rosaria Ciriminna ◽  
Billy Forest ◽  
Francesco Meneguzzo ◽  
Mario Pagliaro ◽  
Mark Hamann

A brief technical and economic insight into producing the water-soluble yellow colorant limocitrol 3-O-6”-[3-hydroxyl-3-methylglutaryl)])-β-D-glucopyranoside from waste lemon peel via simple solid-liquid extraction in aqueous ethanol or via hydrodynamic cavitation of waste lemon peel in water, shows that the biocolorant can be obtained at affordable cost. Coupled to the simplicity and sustainability of the extraction processes suggested, the high chemical and physical stability of this polymethoxylated flavanol and the health benefits of citrus flavonoids, support industrialization of this new bioeconomy production.


2021 ◽  
Author(s):  
Magdalena Buescher ◽  
Rastislav Horos ◽  
Kevin Haubrich ◽  
Nikolay Dobrev ◽  
Florence Baudin ◽  
...  

Macroautophagy ensures the clearance of intracellular substrates ranging from single ubiquitinated proteins to large proteotoxic aggregates and defective organelles. The selective autophagy receptor p62 binds these targets and recruits them to double-membrane vesicles, which fuse with lysosomes to degrade their content. We recently uncovered that p62 function is riboregulated by the small non-coding vault RNA1-1. Here, we present detailed insight into the underlying mechanism. We show that the PB1 domain and adjacent linker region of p62 (aa 1-122) are necessary and sufficient for specific vault RNA1-1 binding, and identify lysine 7 and arginine 21 as key hinges for p62 riboregulation. Chemical structure probing of vault RNA1-1 further reveals a central flexible loop within the RNA that mediates the specific p62 interaction. Our data define molecular determinants that govern mammalian autophagy via the p62-vault RNA1-1 riboregulatory pair.


2000 ◽  
Vol 278 (12) ◽  
pp. 1205-1210
Author(s):  
J. Šňupárek ◽  
L. Mrkvičková ◽  
O. Quadrat ◽  
Z. Walterová ◽  
P. Bradna

2021 ◽  
Author(s):  
Andang Miatmoko ◽  
Qurrota Ayunin ◽  
Widji Soeratri

Skin aging is a phenomenon resulting in reduced self-confidence, thus becoming a major factor in social determinants of health. The use of active cosmetic ingredients can help prevent skin aging. Transfersomes are well known to be capable of deeply penetrating the dermis. This scoping review provides an insight into transfersomes and their prospective use in anti-aging cosmetics. Numerous reports exist highlighting the successful skin delivery of therapeutic agents such as high-molecular-weight, poorly water soluble and poorly permeable active ingredients by means of transfersomes. Moreover, in vitro and in vivo studies have indicated that transfersomes increase the deposition, penetration and efficacy of active ingredients. However, the use of transfersomes in the delivery of active cosmetic ingredients is limited. Considering their similar physicochemical properties, transfersomes should possess considerable potential as a delivery system for anti-aging cosmetics.


Nanoscale ◽  
2019 ◽  
Vol 11 (34) ◽  
pp. 15917-15928 ◽  
Author(s):  
Emily R. Draper ◽  
Liam Wilbraham ◽  
Dave J. Adams ◽  
Matthew Wallace ◽  
Ralf Schweins ◽  
...  

We use a combination of computational and experimental techniques to study the self-assembly and gelation of amino-acid functionalised water-soluble perylene bisimides.


2011 ◽  
Vol 236-238 ◽  
pp. 2045-2052 ◽  
Author(s):  
Qiao Wang ◽  
Jian Wang ◽  
Geng Zhong

Amorphophallus bulbifer (A. bulbifer) is a promising species in Amorphophallus sp., with great potentiality of developing, low risk for cultivation and considerable commercial benefits, mainly locates in tropical and subtropical regions or near the equator. Konjac glucomannan (KGM) is the main component of Amorphophallus tuber which is a water-soluble dietary fiber. In this work, some physiochemical properties of KGM in three Amorphophallus species flour [one was A.bulbifer, the other two were current main species namely Amorphophallus rivieri (A. rivieri) and Amorphophallus albus (A. albus)] were studied and compared with each other. The KGM content in A. rivieri, A. albus and A. bulbifer flour were 85.03%, 76.28% and 88.07% (w/w), respectively. The apparent viscosity, viscosity average molecular weight, whiteness, gel-forming properties and chemical structure of KGM in the three flours were investigated by using viscometer, colorimeter, texture analyzer and Fourier transform infrared (FT-IR) spectroscopy. The results indicated that the viscosity and Mw of A. bulbifer was the largest, gel strength was almost same (p>0.05) and the molecular structure were of no differences of three KGM. It may be proposed that transplanting A. bulbifer from its native land in the tropical and subtropical regions to temperate zone in the southwest part of China would be feasible, and it would cause the revolution of Amorphophallus sp. and more considerable benefits.


Sign in / Sign up

Export Citation Format

Share Document