Mesoporous Polymer Networks-Ultraporous DVB Resins by Hard-Templating of Close-Packed Silica Spheres

2012 ◽  
Vol 33 (9) ◽  
pp. 785-790 ◽  
Author(s):  
Antje Wilke ◽  
Jens Weber
2001 ◽  
Vol 11 (12) ◽  
pp. 2912-2914 ◽  
Author(s):  
Jeong Yeon Kim ◽  
Suk Bon Yoon ◽  
Fathi Kooli ◽  
Jong-Sung Yu

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6757
Author(s):  
Svetlana V. Kurmaz ◽  
Natalia V. Fadeeva ◽  
Anna I. Gorshkova ◽  
Sergey A. Kurochkin ◽  
Eugenia I. Knerelman ◽  
...  

Mesoporous polymer networks were prepared via the cross-linking radical copolymerization of non-toxic hydrophilic N-vinylpyrrolidone (VP) with triethylene glycol dimethacrylate (TEGDM) and poly(ethylene glycol) methyl ester methacrylate (PEGMMA) in bulk, using appropriate soluble and thermodynamically compatible macromolecular additives with a branched structure as porogens. The branched copolymers of various monomer compositions were obtained by radical copolymerization in toluene, controlled by 1-decanethiol, and these materials were characterized by a wide set of physical chemical methods. The specific surface areas and surface morphology of the polymer networks were determined by nitrogen low-temperature adsorption or Rose Bengal (RB) sorption, depending on the copolymer compositions and scanning electron microscopy. The electrochemical properties of RB before and after its encapsulation into a branched VP copolymer were studied on a glassy carbon electrode and the interaction between these substances was observed. Quantum chemical modeling of RB-VP or RB-copolymer complexes has been carried out and sufficiently strong hydrogen bonds were found in these systems. The experimental and modeling data demonstrate the high potency of such mesoporous polymer networks as precursors of molecularly imprinted polymers for the recognition of fluorescent dyes as nanomarkers for biomedical practice.


2018 ◽  
Author(s):  
Leilei Xiao ◽  
Casey Ching ◽  
Yuhan Ling ◽  
Mohammadreza Nasiri ◽  
Max Justin Klemes ◽  
...  

This work describes several crosslinked β-cyclodextrin polymer networks and correlates the crosslinker chemistry with binding affinity for per- and polyfluorinated alkyl substances (PFASs), including PFOA and PFOS.


2019 ◽  
Author(s):  
Simil Thomas ◽  
Hong Li ◽  
Raghunath R. Dasari ◽  
Austin Evans ◽  
William Dichtel ◽  
...  

<p>We have considered three two-dimensional (2D) π-conjugated polymer networks (i.e., covalent organic frameworks, COFs) materials based on pyrene, porphyrin, and zinc-porphyrin cores connected <i>via</i> diacetylenic linkers. Their electronic structures, investigated at the density functional theory global-hybrid level, are indicative of valence and conduction bands that have large widths, ranging between 1 and 2 eV. Using a molecular approach to derive the electronic couplings between adjacent core units and the electron-vibration couplings, the three π-conjugated 2D COFs are predicted to have ambipolar charge-transport characteristics with electron and hole mobilities in the range of 65-95 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>. Such predicted values rank these 2D COFs among the highest-mobility organic semiconductors. In addition, we have synthesized the zinc-porphyrin based 2D COF and carried out structural characterization via powder X-ray diffraction and surface area analysis, which demonstrates the feasability of these electroactive networks.</p>


Author(s):  
Paul Eric B. Parañal

Abstract This paper presents a new fail mechanism for laser-marking induced die damage. Discovered during package qualification, silica spheres – commonly used as fillers in the molding material, was shown to act as a propagation medium that promote the direct interaction of the scribing laser beam and the die surface. Critical to the understanding of the fail mechanism is the deprocessing technique devised to allow layer by layer examination of the metallization and passivation layers in an encapsulated silicon die. The technique also made possible the inspection of the molding compound profile directly on top of the affected die area.


Sign in / Sign up

Export Citation Format

Share Document