Evaluation of Printing Parameters on Porosity and Mechanical Properties of 3D Printed PLA/PBAT Blend Parts

2020 ◽  
Vol 394 (1) ◽  
pp. 2000157
Author(s):  
Paulo Henrique Machado Cardoso ◽  
Rafaella Rabello Teixeira Perdone Coutinho ◽  
Flávia Rocha Drummond ◽  
Marceli do Nascimento da Conceição ◽  
Rossana Mara da Silva Moreira Thiré
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1758
Author(s):  
Ming-Hsien Hsueh ◽  
Chao-Jung Lai ◽  
Shi-Hao Wang ◽  
Yu-Shan Zeng ◽  
Chia-Hsin Hsieh ◽  
...  

Fused Deposition Modeling (FDM) can be used to manufacture any complex geometry and internal structures, and it has been widely applied in many industries, such as the biomedical, manufacturing, aerospace, automobile, industrial, and building industries. The purpose of this research is to characterize the polylactic acid (PLA) and polyethylene terephthalate glycol (PETG) materials of FDM under four loading conditions (tension, compression, bending, and thermal deformation), in order to obtain data regarding different printing temperatures and speeds. The results indicated that PLA and PETG materials exhibit an obvious tensile and compression asymmetry. It was observed that the mechanical properties (tension, compression, and bending) of PLA and PETG are increased at higher printing temperatures, and that the effect of speed on PLA and PETG shows different results. In addition, the mechanical properties of PLA are greater than those of PETG, but the thermal deformation is the opposite. The above results will be a great help for researchers who are working with polymers and FDM technology to achieve sustainability.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2774-2788
Author(s):  
Zhaozhe Yang ◽  
Xinhao Feng ◽  
Min Xu ◽  
Denis Rodrigue

To efficiently and economically utilize a wood-plastic biocomposite, an eco-friendly biocomposite was prepared using modified poplar fiber and polylactic acid (PLA) via 3D printing technology for the first time. First, the effects of poplar fiber (0, 1, 3, 5, 7, and 9%) on the mechanical and rheological properties of the printed biocomposites were investigated. Subsequently, the printing parameters, including printing temperature, speed, and layer thickness, were optimized to obtain the biocomposite with superior properties. Finally, four printing orientations were applied to the biocomposite based on the optimized printing parameters to study the effect of filament orientation on the properties of the biocomposite. Favorable printability and mechanical properties of the biocomposite were obtained at 5% poplar fiber. The optimal printing temperature of 220 °C, speed of 40 mm/s, and layer thickness of 0.2 mm were obtained to produce the desired mechanical properties of the biocomposite with the printing orientation in a longitudinal stripe. However, the printing parameters should be chosen according to the applications, where different physical and mechanical properties are needed to achieve efficient and economical utilization of the biocomposites.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rafael Moreno ◽  
Diego Carou ◽  
Daniel Carazo-Álvarez ◽  
Munish Kumar Gupta

Purpose 3D printing is gaining attention in the medical sector for the development of customized solutions for a wide range of applications such as temporary external implants. The materials used for the manufacturing process are critical, as they must provide biocompatibility and adequate mechanical properties. This study aims to evaluate and model the influence of the printing parameters on the mechanical properties of two biocompatible materials. Design/methodology/approach In this study, the mechanical properties of 3D-printed specimens of two biocompatible materials (ABS medical and PLActive) were evaluated. The influence of several printing parameters (infill density, raster angle and layer height) was studied and modelled on three response variables: ultimate tensile strength, deformation at the ultimate tensile strength and Young’s modulus. Therefore, statistical models were developed to predict the mechanical responses based on the selected printing parameters. Findings The used methodology allowed obtaining compact models that show good fit, particularly, for both the ultimate tensile strength and Young’s modulus. Regarding the deformation at ultimate tensile strength, this output was found to be influenced by more factors and interactions, resulting in a slightly less precise model. In addition, the influence of the printing parameters was discussed in the work. Originality/value The presented paper proposed the use of statistical models to select the printing parameters (infill density, raster angle and layer height) to optimize the mechanical response of external medical aids. The models will help users, researchers and firms to develop optimized solutions that can reduce material costs and printing time but guaranteeing the mechanical response of the parts.


Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 164
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Polylactic acid (PLA) belongs to the few thermoplastic polymers that are derived from renewable resources such as corn starch or sugar cane. PLA is often used in 3D printing by fused deposition modeling (FDM) as it is relatively easy to print, does not show warping and can be printed without a closed building chamber. On the other hand, PLA has interesting mechanical properties which are influenced by the printing parameters and geometries. Here we present shape-memory properties of PLA cubes with different infill patterns and percentages, extending the research reported before in a conference paper. We investigate the material response under defined quasi-static load as well as the possibility to restore the original 3D printed shape. The quasi-static flexural properties are linked to the porosity and the infill structure of the samples under investigation as well as to the numbers of closed top layers, examined optically and by simulations. Our results underline the importance of designing the infill patterns carefully to develop samples with desired mechanical properties.


2021 ◽  
Vol 112 (1) ◽  
pp. 13-22
Author(s):  
A. El Magri ◽  
S. Vaudreuil

Purpose: This work aims to study the relationship between various processing parameters to fabricate PLA-graphene based 3D parts with high mechanical properties. The selected parameters in this study are known for their critical impact on the final properties of printed parts. Design/methodology/approach: Three key printing parameters are simultaneously studied in a systematic manner using central composite design (CCD). The selected printing parameters are printing temperature, printing speed, and layer thickness. Findings: Through a variance analysis, all tested printing parameters significantly impact the final properties of printed PLA-graphene’s parts. A response surface methodology (RSM) was also applied to analyse the results and to optimize the tensile and the flexural properties. According to this latter methodology, the optimum factor levels are found at 200°C printing temperature, 34.65 mm s-1 printing speed and 0.2 mm layer thickness. Research limitations/implications: Results indicate that layer thickness and printing speed are the dominant contributors to tensile and flexural properties. Originality/value: As one of the few polymers loaded with nanoparticles available, polylactic acid (PLA) reinforced graphene was selected in this study as a base material for FFF 3D printing process. A response surface methodology was applied to analyse the results and to maximize the tensile and flexural properties of 3D printed PLA-graphene composite.


2021 ◽  
pp. 1-18
Author(s):  
N. Vinoth Babu ◽  
N. Venkateshwaran ◽  
N. Rajini ◽  
Sikiru Oluwarotimi Ismail ◽  
Faruq Mohammad ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Tim Tofan ◽  
Rimantas Stonkus ◽  
Raimondas Jasevičius

The aim of this research is to investigate related effect of dyeability to linen textiles related to different printing parameters. The study investigated the change in color characteristics when printing on linen fabrics with an inkjet MIMAKI Tx400-1800D printer with pigmented TP 250 inks. The dependence of color reproduction on linen fabrics on the number of print head passes, number of ink layers to be coated, linen fabric density, and different types of linen fabric was investigated. All this affects the quality of print and its mechanical properties. The change in color characteristics on different types of linen fabrics was determined experimentally. We determine at which print settings the most accurate color reproduction can be achieved on different linen fabrics. The difference between the highest and the lowest possible number of head passages was investigated. The possibilities of reproducing different linen fabric colors were determined.


Sign in / Sign up

Export Citation Format

Share Document