scholarly journals Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: Role of M1muscarinic receptors

2014 ◽  
Vol 29 (13) ◽  
pp. 1655-1665 ◽  
Author(s):  
Marta Maltese ◽  
Giuseppina Martella ◽  
Graziella Madeo ◽  
Irene Fagiolo ◽  
Annalisa Tassone ◽  
...  
2021 ◽  
Author(s):  
Huaying Cai ◽  
Linhui Ni ◽  
Xingyue Hu ◽  
Xianjun Ding

Abstract Background & objectiveStriatal plasticity alterations caused by endoplasmic reticulum (ER) stress is supposed to be critically involved in the mechanism of DYT1 dystonia. In the current study, we expanded this research field by investigating the critical role of ER stress underlying synaptic plasticity impairment imposed by mutant heterozygous Tor1a+/- in a DYT1 dystonia mouse model.Methods & resultsLong-term depression (LTD) was failed to be induced, while long-term potentiation (LTP) was further strengthened in striatal spiny neurons (SPNs) from the Tor1a+/- DYT1 dystonia mice. Spine morphology analyses revealed a significant increase of both number of mushroom type spines and spine width in Tor1a+/- SPNs. In addition, increased AMPA receptor function and the reduction of NMDA/AMPA ratio in the postsynaptic of Tor1a+/- SPNs was observed, along with increased ER stress protein levels in Tor1a+/- striatum. Notably, ER stress inhibitors, tauroursodeoxycholic acid (TUDCA), could rescue LTD as well as AMPA currents.ConclusionThe current study illustrated the role of ER stress in mediating structural and functional plasticity alterations in Tor1a+/- SPNs. Inhibition of the ER stress by TUDCA is beneficial in reversing the deficits at the cellular and molecular levels. Remedy of dystonia associated neurological and motor functional impairment by ER stress inhibitors could be a recommendable therapeutic agent in clinical practice.


Brain ◽  
2009 ◽  
Vol 132 (9) ◽  
pp. 2336-2349 ◽  
Author(s):  
Giuseppina Martella ◽  
Annalisa Tassone ◽  
Giuseppe Sciamanna ◽  
Paola Platania ◽  
Dario Cuomo ◽  
...  

2016 ◽  
Vol 22 (14) ◽  
pp. 2004-2014 ◽  
Author(s):  
Marco Fuenzalida ◽  
Miguel Ángel Pérez ◽  
Hugo R. Arias

2021 ◽  
Vol 22 (15) ◽  
pp. 7887
Author(s):  
Carmen Nanclares ◽  
Andres Mateo Baraibar ◽  
Alfonso Araque ◽  
Paulo Kofuji

Recent studies implicate astrocytes in Alzheimer’s disease (AD); however, their role in pathogenesis is poorly understood. Astrocytes have well-established functions in supportive functions such as extracellular ionic homeostasis, structural support, and neurovascular coupling. However, emerging research on astrocytic function in the healthy brain also indicates their role in regulating synaptic plasticity and neuronal excitability via the release of neuroactive substances named gliotransmitters. Here, we review how this “active” role of astrocytes at synapses could contribute to synaptic and neuronal network dysfunction and cognitive impairment in AD.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 359
Author(s):  
Maximilian Lenz ◽  
Amelie Eichler ◽  
Andreas Vlachos

Inflammation of the central nervous system can be triggered by endogenous and exogenous stimuli such as local or systemic infection, trauma, and stroke. In addition to neurodegeneration and cell death, alterations in physiological brain functions are often associated with neuroinflammation. Robust experimental evidence has demonstrated that inflammatory cytokines affect the ability of neurons to express plasticity. It has been well-established that inflammation-associated alterations in synaptic plasticity contribute to the development of neuropsychiatric symptoms. Nevertheless, diagnostic approaches and interventional strategies to restore inflammatory deficits in synaptic plasticity are limited. Here, we review recent findings on inflammation-associated alterations in synaptic plasticity and the potential role of the blood–brain interface, i.e., the blood–brain barrier, in modulating synaptic plasticity. Based on recent findings indicating that brain stimulation promotes plasticity and modulates vascular function, we argue that clinically employed non-invasive brain stimulation techniques, such as transcranial magnetic stimulation, could be used for monitoring and modulating inflammation-induced alterations in synaptic plasticity.


Biomaterials ◽  
2013 ◽  
Vol 34 (38) ◽  
pp. 10172-10181 ◽  
Author(s):  
Liang Chen ◽  
Yanyan Miao ◽  
Lin Chen ◽  
Peipei Jin ◽  
Yingying Zha ◽  
...  

2019 ◽  
Vol 20 (14) ◽  
pp. 3407 ◽  
Author(s):  
Paola Imbriani ◽  
Annalisa Tassone ◽  
Maria Meringolo ◽  
Giulia Ponterio ◽  
Graziella Madeo ◽  
...  

Caspases are a family of conserved cysteine proteases that play key roles in multiple cellular processes, including programmed cell death and inflammation. Recent evidence shows that caspases are also involved in crucial non-apoptotic functions, such as dendrite development, axon pruning, and synaptic plasticity mechanisms underlying learning and memory processes. The activated form of caspase-3, which is known to trigger widespread damage and degeneration, can also modulate synaptic function in the adult brain. Thus, in the present study, we tested the hypothesis that caspase-3 modulates synaptic plasticity at corticostriatal synapses in the phosphatase and tensin homolog (PTEN) induced kinase 1 (PINK1) mouse model of Parkinson’s disease (PD). Loss of PINK1 has been previously associated with an impairment of corticostriatal long-term depression (LTD), rescued by amphetamine-induced dopamine release. Here, we show that caspase-3 activity, measured after LTD induction, is significantly decreased in the PINK1 knockout model compared with wild-type mice. Accordingly, pretreatment of striatal slices with the caspase-3 activator α-(Trichloromethyl)-4-pyridineethanol (PETCM) rescues a physiological LTD in PINK1 knockout mice. Furthermore, the inhibition of caspase-3 prevents the amphetamine-induced rescue of LTD in the same model. Our data support a hormesis-based double role of caspase-3; when massively activated, it induces apoptosis, while at lower level of activation, it modulates physiological phenomena, like the expression of corticostriatal LTD. Exploring the non-apoptotic activation of caspase-3 may contribute to clarify the mechanisms involved in synaptic failure in PD, as well as in view of new potential pharmacological targets.


Sign in / Sign up

Export Citation Format

Share Document