Analytical solution for temperature distribution in functionally graded cylindrical shells under convective cooling

Author(s):  
Amin Emamian ◽  
Amin Amiri Delouei ◽  
Sajjad Karimnejad ◽  
Dengwei Jing
2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Hossein Rahmani ◽  
Mahmood Norouzi ◽  
Alireza Komeili Birjandi ◽  
Amir Komeili Birjandi

Abstract In this study, an analytical solution is proposed for the problem of transient anisotropic conductive heat transfer in composite cylindrical shells. The composite shells are considered to have directional heat transfer properties, which is due to the existence of fibers which can be winded in any direction. The composite shells usually show high conductivity in the direction parallel to fiber direction and low conductivity in other two orthogonal directions. To solve the heat transfer partial differential equation, finite Fourier transform and separation of variables method are used. The present solution is used to find the temperature distribution in a composite cylindrical vessel for which the composite material is graphite/epoxy and the vessel is prone to an external heat flux and also ambient flow. The analytical solution is verified perfectly by the data obtained from a second-order finite difference solution. The solution is used to investigate the effects of values of fiber angle and material conductivity coefficients on temperature distribution of the composite cylindrical vessel. The results show the important role of fiber angle values on the temperature distribution of vessel.


Author(s):  
Hong-Liang Dai ◽  
Yi-Nan Qi ◽  
Wei-Feng Luo

AbstractThis paper presents an analytical solution for electrothermoelastic behavior of FGPM (functionally graded piezoelectric material) cylindrical shell. The cylindrical shell is assumed to be made up of two piezoelectric materials with their volume fractures varying along the thickness according to a simple power law. Based on classical thin shell theory, an analytical solution for electrothermoelastic performance of the FGPM cylindrical shell is presented. To investigate the influence of the power lower exponent, thermal environment, mechanical loading and electric boundary conditions on the electrothermoelastic behavior of FGPM cylindrical shells, numerical examples are presented and discussed, and some meaningful and valuable results are discovered, which will be very helpful for the design and application of such smart sensory structures.


2020 ◽  
Vol 10 (7) ◽  
pp. 2600
Author(s):  
Tho Hung Vu ◽  
Hoai Nam Vu ◽  
Thuy Dong Dang ◽  
Ngoc Ly Le ◽  
Thi Thanh Xuan Nguyen ◽  
...  

The present paper deals with a new analytical approach of nonlinear global buckling of spiral corrugated functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical shells subjected to radial loads. The equilibrium equation system is formulated by using the Donnell shell theory with the von Karman’s nonlinearity and an improved homogenization model for spiral corrugated structure. The obtained governing equations can be used to research the nonlinear postbuckling of mentioned above structures. By using the Galerkin method and a three term solution of deflection, an approximated analytical solution for the nonlinear stability problem of cylindrical shells is performed. The linear critical buckling loads and postbuckling strength of shells under radial loads are numerically investigated. Effectiveness of spiral corrugation in enhancing the global stability of spiral corrugated FG-CNTRC cylindrical shells is investigated.


Sign in / Sign up

Export Citation Format

Share Document