A broadband metal coaxial resonator antenna loaded with dielectric lens

Author(s):  
Jing Tan ◽  
Juan Chen ◽  
Xiangyuan Sang ◽  
Man Luo
2010 ◽  
Vol 69 (6) ◽  
pp. 489-493
Author(s):  
R. I. Bilous ◽  
S. P. Martynyuk ◽  
A. P. Motornenko ◽  
I. G. Skuratovskiy ◽  
O. I. Khazov
Keyword(s):  

2009 ◽  
Vol 68 (11) ◽  
pp. 943-950
Author(s):  
R. I. Belous ◽  
S. P. Martynyuk ◽  
A. P. Motornenko ◽  
I. G. Skuratovskiy ◽  
I. O. Bilous

2016 ◽  
Vol 75 (10) ◽  
pp. 887-894 ◽  
Author(s):  
R. I. Bilous ◽  
A. P. Motornenko ◽  
I. G. Skuratovskiy ◽  
O. I. Khazov

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Renan Alves dos Santos ◽  
Gabriel Lobão da Silva Fré ◽  
Luís Gustavo da Silva ◽  
Marcelo Carneiro de Paiva ◽  
Danilo Henrique Spadoti

This paper presents a high-directivity ultra-wideband beamsteering antenna array. An innovative beamsteering system based on hemispherical dielectric lenses fed by a set of different printed antennas is proposed. Diversity of signals in different spatial positions can be radiated at the same time. A prototype was manufactured and characterized, operating in a bandwidth varying from 8 GHz to 12 GHz with gain up to 13 dBi.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. A. B. Abbasi ◽  
V. F. Fusco ◽  
O. Yurduseven ◽  
T. Fromenteze

AbstractThis paper presents a physical frequency-diverse multimode lens-loaded cavity, designed and used for the purpose of the direction of arrival (DoA) estimation in millimetre-wave frequency bands for 5G and beyond. The multi-mode mechanism is realized using an electrically-large cavity, generating spatio-temporally incoherent radiation masks leveraging the frequency-diversity principle. It has been shown for the first time that by placing a spherical constant dielectric lens (constant-ϵr) in front of the radiating aperture of the cavity, the spatial incoherence of the radiation modes can be enhanced. The lens-loaded cavity requires only a single lens and output port, making the hardware development much simpler and cost-effective compared to conventional DoA estimators where multiple antennas and receivers are classically required. Using the lens-loaded architecture, an increase of up to 6 dB is achieved in the peak gain of the synthesized quasi-random sampling bases from the frequency-diverse cavity. Despite the fact that the practical frequency-diverse cavity uses a limited subset of quasi-orthogonal modes below the upper bound limit of the number of theoretical modes, it is shown that the proposed lens-loaded cavity is capable of accurate DoA estimation. This is achieved thanks to the sufficient orthogonality of the leveraged modes and to the presence of the spherical constant-ϵr lens which increases the signal-to-noise ratio (SNR) of the received signal. Experimental results are shown to verify the proposed approach.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hossein Eskandari ◽  
Juan Luis Albadalejo-Lijarcio ◽  
Oskar Zetterstrom ◽  
Tomáš Tyc ◽  
Oscar Quevedo-Teruel

AbstractConformal transformation optics is employed to enhance an H-plane horn’s directivity by designing a graded-index all-dielectric lens. The transformation is applied so that the phase error at the aperture is gradually eliminated inside the lens, leading to a low-profile high-gain lens antenna. The physical space shape is modified such that singular index values are avoided, and the optical path inside the lens is rescaled to eliminate superluminal regions. A prototype of the lens is fabricated using three-dimensional printing. The measurement results show that the realized gain of an H-plane horn antenna can be improved by 1.5–2.4 dB compared to a reference H-plane horn.


Sign in / Sign up

Export Citation Format

Share Document