scholarly journals Frequency-diverse multimode millimetre-wave constant-ϵr lens-loaded cavity

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. A. B. Abbasi ◽  
V. F. Fusco ◽  
O. Yurduseven ◽  
T. Fromenteze

AbstractThis paper presents a physical frequency-diverse multimode lens-loaded cavity, designed and used for the purpose of the direction of arrival (DoA) estimation in millimetre-wave frequency bands for 5G and beyond. The multi-mode mechanism is realized using an electrically-large cavity, generating spatio-temporally incoherent radiation masks leveraging the frequency-diversity principle. It has been shown for the first time that by placing a spherical constant dielectric lens (constant-ϵr) in front of the radiating aperture of the cavity, the spatial incoherence of the radiation modes can be enhanced. The lens-loaded cavity requires only a single lens and output port, making the hardware development much simpler and cost-effective compared to conventional DoA estimators where multiple antennas and receivers are classically required. Using the lens-loaded architecture, an increase of up to 6 dB is achieved in the peak gain of the synthesized quasi-random sampling bases from the frequency-diverse cavity. Despite the fact that the practical frequency-diverse cavity uses a limited subset of quasi-orthogonal modes below the upper bound limit of the number of theoretical modes, it is shown that the proposed lens-loaded cavity is capable of accurate DoA estimation. This is achieved thanks to the sufficient orthogonality of the leveraged modes and to the presence of the spherical constant-ϵr lens which increases the signal-to-noise ratio (SNR) of the received signal. Experimental results are shown to verify the proposed approach.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Okan Yurduseven ◽  
Muhammad Ali Babar Abbasi ◽  
Thomas Fromenteze ◽  
Vincent Fusco

Abstract We present a frequency-diverse based direction of arrival (DoA) estimation technique for millimetre-wave (mmW) 5G channel sounding. Frequency-diversity enables the creation of spatially incoherent radiation masks to encode the plane-wave signals incident on the radar aperture using a single antenna. Leveraging the frequency-diversity concept, spatial information of the plane-wave projections on the radar aperture is retrieved, resulting in high-fidelity DoA estimations by means of a simple Fourier transform operation applied to the retrieved plane-wave projection patterns. It is demonstrated that using the frequency-diversity concept, DoA estimation can be achieved through a simple frequency sweep, compressing the incoming plane-waves into a single channel through the transfer function of the radar aperture. This results in a significant simplification in the system hardware, requiring only a single antenna to achieve DoA estimation. It is also shown that the proposed technique can simultaneously detect the DoA information for multiple sources with a diffraction limited resolution.


2018 ◽  
Author(s):  
Satish Kodali ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chong Khiam Oh

Abstract Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.


2018 ◽  
Vol 9 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Shubhangi J. Mane-Gavade ◽  
Sandip R. Sabale ◽  
Xiao-Ying Yu ◽  
Gurunath H. Nikam ◽  
Bhaskar V. Tamhankar

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time. Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998. Results & Conclusion The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1051
Author(s):  
Jonattan Gallegos-Catalán ◽  
Zachary Warnken ◽  
Tania F. Bahamondez-Canas ◽  
Daniel Moraga-Espinoza

Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.


2021 ◽  
Vol 9 (9) ◽  
pp. 3257-3263
Author(s):  
Jianwei Liu ◽  
Zhimin Ma ◽  
Zewei Li ◽  
Yan Liu ◽  
Xiaohua Fu ◽  
...  

Two isomers pDCzPyCN and oDCzPyCN are designed and synthesized. Amazingly, oDCzPyCN manifest white afterglow at room temperature. This is the first time that single-component white afterglow has finally been realized.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 893
Author(s):  
Olufunto T. Fanoro ◽  
Sundararajan Parani ◽  
Rodney Maluleke ◽  
Thabang C. Lebepe ◽  
Jose R. Varghese ◽  
...  

We herein report a facile, green, cost-effective, plant-mediated synthesis of gold nanoparticles (AuNPs) for the first time using Combretum erythrophyllum (CE) plant leaves. The synthesis was conducted at room temperature using CE leaf extract serving as a reducing and capping agent. The as-synthesized AuNPs were found to be crystalline, well dispersed, and spherical in shape with an average diameter of 13.20 nm and an excellent stability of over 60 days. The AuNPs showed broad-spectrum antibacterial activities against both pathogenic Gram-positive (Staphylococcus epidermidis (ATCC14990), Staphylococcus aureus (ATCC 25923), Mycobacterium smegmatis (MC 215)) and Gram-negative bacteria (Proteus mirabilis (ATCC 7002), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13822), Klebsiella oxytoca (ATCC 8724)), with a minimum inhibition concentration of 62.5 µg/mL. In addition, the as-synthesized AuNPs were highly stable with exceptional cell viability towards normal cells (BHK- 21) and cancerous cancer cell lines (cervical and lung cancer).


Author(s):  
Gaurav Saxena ◽  
Priyanka Jain ◽  
Y. K. Awasthi

Abstract In this paper, a ultra-wideband (UWB) bandpass filter with stopband characteristics is presented using a multi-mode resonator (MMR) technique. An MMR is formed by loading three dumbbell-shaped (Mickey and circular) shunt stubs placed in the center and two symmetrical locations from ports, respectively. Three circular and arrowhead defected ground structures on the ground plane are introduced to achieve UWB bandwidth with a better roll-off rate. The proposed filter exhibits stopband characteristics from 10.8 to 20 GHz with a 0.4 dB return loss. The group delay and roll-off rate of the designed filter are <0.30 ns in the passband and 16 dB/GHz at lower and higher cut-off frequencies, respectively. The dimension of the filter is 0.74λg × 0.67λg mm2 and was fabricated on a cost-effective substrate. All simulated results are verified through the experimental results.


Author(s):  
Xiufeng Li ◽  
Victor T C Tsang ◽  
Lei Kang ◽  
Yan Zhang ◽  
Terence T W Wong

AbstractLaser diodes (LDs) have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy (PAM). However, the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously. In this paper, we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD, operating at a pulsed mode, with a repetition rate of 30 kHz, as an excitation source. A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio. By optimizing the optical system, a high lateral resolution of 4.8 μm has been achieved. In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.


2015 ◽  
Vol 8 (11) ◽  
pp. 4817-4830 ◽  
Author(s):  
X. Xi ◽  
V. Natraj ◽  
R. L. Shia ◽  
M. Luo ◽  
Q. Zhang ◽  
...  

Abstract. The Geostationary Fourier Transform Spectrometer (GeoFTS) is designed to measure high-resolution spectra of reflected sunlight in three near-infrared bands centered around 0.76, 1.6, and 2.3 μm and to deliver simultaneous retrievals of column-averaged dry air mole fractions of CO2, CH4, CO, and H2O (denoted XCO2, XCH4, XCO, and XH2O, respectively) at different times of day over North America. In this study, we perform radiative transfer simulations over both clear-sky and all-sky scenes expected to be observed by GeoFTS and estimate the prospective performance of retrievals based on results from Bayesian error analysis and characterization. We find that, for simulated clear-sky retrievals, the average retrieval biases and single-measurement precisions are < 0.2 % for XCO2, XCH4, and XH2O, and < 2 % for XCO, when the a priori values have a bias of 3 % and an uncertainty of 3 %. In addition, an increase in the amount of aerosols and ice clouds leads to a notable increase in the retrieval biases and slight worsening of the retrieval precisions. Furthermore, retrieval precision is a strong function of signal-to-noise ratio and spectral resolution. This simulation study can help guide decisions on the design of the GeoFTS observing system, which can result in cost-effective measurement strategies while achieving satisfactory levels of retrieval precisions and biases. The simultaneous retrievals at different times of day will be important for more accurate estimation of carbon sources and sinks on fine spatiotemporal scales and for studies related to the atmospheric component of the water cycle.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1196 ◽  
Author(s):  
Seulah Lee ◽  
Babar Jamil ◽  
Sunhong Kim ◽  
Youngjin Choi

Myoelectric prostheses assist users to live their daily lives. However, the majority of users are primarily confined to forearm amputees because the surface electromyography (sEMG) that understands the motion intents should be acquired from a residual limb for control of the myoelectric prosthesis. This study proposes a novel fabric vest socket that includes embroidered electrodes suitable for a high-level upper amputee, especially for shoulder disarticulation. The fabric vest socket consists of rigid support and a fabric vest with embroidered electrodes. Several experiments were conducted to verify the practicality of the developed vest socket with embroidered electrodes. The sEMG signals were measured using commercial Ag/AgCl electrodes for a comparison to verify the performance of the embroidered electrodes in terms of signal amplitudes, the skin-electrode impedance, and signal-to-noise ratio (SNR). These results showed that the embroidered electrodes were as effective as the commercial electrodes. Then, posture classification was carried out by able-bodied subjects for the usability of the developed vest socket. The average classification accuracy for each subject reached 97.92%, and for all the subjects it was 93.2%. In other words, the fabric vest socket with the embroidered electrodes could measure sEMG signals with high accuracy. Therefore, it is expected that it can be readily worn by high-level amputees to control their myoelectric prostheses, as well as it is cost effective for fabrication as compared with the traditional socket.


Sign in / Sign up

Export Citation Format

Share Document