Long-Term Genistein Consumption Modifies Gut Microbiota, Improving Glucose Metabolism, Metabolic Endotoxemia, and Cognitive Function in Mice Fed a High-Fat Diet

2018 ◽  
Vol 62 (16) ◽  
pp. 1800313 ◽  
Author(s):  
Patricia López ◽  
Mónica Sánchez ◽  
Claudia Perez-Cruz ◽  
Laura A. Velázquez-Villegas ◽  
Tauqeerunnisa Syeda ◽  
...  
mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Chao Kang ◽  
Bin Wang ◽  
Kanakaraju Kaliannan ◽  
Xiaolan Wang ◽  
Hedong Lang ◽  
...  

ABSTRACT Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation. IMPORTANCE Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP. Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP.


2016 ◽  
Vol 310 (11) ◽  
pp. E886-E899 ◽  
Author(s):  
Pia Kiilerich ◽  
Lene Secher Myrmel ◽  
Even Fjære ◽  
Qin Hao ◽  
Floor Hugenholtz ◽  
...  

Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein/sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue, affecting pathways related to metabolism and inflammation. Analysis of fecal bacterial DNA using the Mouse Intestinal Tract Chip revealed significant changes in the composition of the gut microbiota in relation to host age and dietary fat content, but not the protein/sucrose ratio. Accordingly, dietary fat rather than the protein/sucrose ratio or adiposity is a major driver shaping the gut microbiota, whereas the effect of a high-fat diet on survival is dependent on the protein/sucrose ratio.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Shi ◽  
Ruixue Feng ◽  
Jieqi Mao ◽  
Shuangping Liu ◽  
Zhilei Zhou ◽  
...  

Hyperlipidemia is a chronic disorder that is difficult to cure and usually treated with long-term lipid-reducing drugs. Recent trends have led to the use of diet therapies or food-derived strategies in the treatment of such long-term diseases. The Chinese rice wine (huangjiu) contains a wide range of bioactive peptides that are produced during the multi-species fermentation process. To clarify the regulation effects of lipid metabolism and gut microbiota by huangjiu bioactive peptides, three huangjiu peptides were isolated, purified and characterized by hyper-filtration, macroporous resin, gel filtration separation and structural identification. Meanwhile, a mouse model of high-fat diet-induced hyperlipidemia was established to study the effects of huangjiu peptides on serum biomarker, hepatic metabolism and gut microbiota dysbiosis. Experimental results showed that huangjiu peptides T1 and T2 (HpT1, HpT2) treatment alleviated the increase in serum total cholesterol, triglyceride, low-density lipoprotein cholesterol levels and aberrant hepatic lipid accumulation in the high-fat diet-induced hyperlipidemia mice. Furthermore, HpT2 and HpT1 restored the α-diversity and structure of gut microbial community after hyperlipidemia-induced microbiota disturbance compared with simvastatin and HpT3. The administration of HpT2 and HpT1 regulated the microbiota-mediated gut ecology through alterations of characteristic taxa including Lactobacillus, Ileibacterium, Faecalibaculum and Alloprevotella by linear discriminant analysis effect size analysis. Collectively, our results offer new insights into the abilities of food-derived peptides on alleviation of high-fat diet-induced hyperlipidemia, hepatic steatosis and gut dysbiosis in mice.


2017 ◽  
Vol 312 (2) ◽  
pp. E89-E97 ◽  
Author(s):  
Zhuo Fu ◽  
Jing Wu ◽  
Tanseli Nesil ◽  
Ming D. Li ◽  
Kevin W. Aylor ◽  
...  

Insulin action on hippocampus improves cognitive function, and obesity and type 2 diabetes are associated with decreased cognitive function. Cerebral microvasculature plays a critical role in maintaining cerebral vitality and function by supplying nutrients, oxygen, and hormones such as insulin to cerebral parenchyma, including hippocampus. In skeletal muscle, insulin actively regulates microvascular opening and closure, and this action is impaired in the insulin-resistant states. To examine insulin’s action on hippocampal microvasculature and parenchyma and the impact of diet-induced obesity, we determined cognitive function and microvascular insulin responses, parenchyma insulin responses, and capillary density in the hippocampus in 2- and 8-mo-old rats on chow diet and 8-mo-old rats on a long-term high-fat diet (6 mo). Insulin infusion increased hippocampal microvascular perfusion in rats on chow diet by ~80–90%. High-fat diet feeding completely abolished insulin-mediated microvascular responses and protein kinase B phosphorylation but did not alter the capillary density in the hippocampus. This was associated with a significantly decreased cognitive function assessed using both the two-trial spontaneous alternation behavior test and the novel object recognition test. As the microvasculature provides the needed endothelial surface area for delivery of nutrients, oxygen, and insulin to hippocampal parenchyma, we conclude that hippocampal microvascular insulin resistance may play a critical role in the development of cognitive impairment seen in obesity and diabetes. Our results suggest that improvement in hippocampal microvascular insulin sensitivity might help improve or reverse cognitive function in the insulin-resistant states.


Diabetes ◽  
2008 ◽  
Vol 57 (6) ◽  
pp. 1470-1481 ◽  
Author(s):  
P. D. Cani ◽  
R. Bibiloni ◽  
C. Knauf ◽  
A. Waget ◽  
A. M. Neyrinck ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1182 ◽  
Author(s):  
Mónica Sánchez-Tapia ◽  
Irma Hernández-Velázquez ◽  
Edgar Pichardo-Ontiveros ◽  
Omar Granados-Portillo ◽  
Amanda Gálvez ◽  
...  

There is limited information on the effect of black beans (BB) as a source of protein and resistant starch on the intestinal microbiota. The purpose of the present work was to study the effect of cooked black beans with and without high fat and sugar (HF + S) in the diet on body composition, energy expenditure, gut microbiota, short-chain fatty acids, NF-κB, occluding and insulin signaling in a rat model and the area under the curve for glucose, insulin and incretins in healthy subjects. The consumption of BB reduced the percentage of body fat, the area under the curve of glucose, serum leptin, LPS, glucose and insulin concentrations and increased energy expenditure even in the presence of HF + S. These results could be mediated in part by modification of the gut microbiota, by increasing a cluster of bacteria in the Clostridia class, mainly R. bromii, C. eutactus, R. callidus, R. flavefaciens and B. pullicaecorum and by an increase in the concentration of fecal butyrate. In conclusion, the consumption of BB can be recommended to prevent insulin resistance and metabolic endotoxemia by modifying the gut microbiota. Finally, the groups fed BB showed lower abundance of hepatic FMO-3, even with a high-fat diet protecting against the production of TMAO and obesity.


Author(s):  
Brandi Miller ◽  
Rabina Mainali ◽  
Ravinder Nagpal ◽  
Hariom Yadav

The prevalence of type-2 diabetes mellitus (T2D) is increasing worldwide and there are no long-term preventive strategies to stop this growth. Emerging research shows that perturbations in the gut microbiome significantly contribute to the development of T2D, while microbiome modulators may be beneficial for T2D prevention. However, microbiome modulators that are effective, safe, affordable, and able to be integrated daily in the diet are not yet available. Based on our previous pro- and prebiotic studies, we developed a novel synbiotic yogurt comprised of human-origin probiotics and plant-based prebiotics and investigated its impact on diet- and streptozotocin-induced T2D in mice. We compared the effects of our synbiotic yogurt to those of a commercially-available yogurt (control yogurt). Interestingly, we found that feeding of this synbiotic yogurt significantly reduced the development of hyperglycemia (diabetes) in response to high-fat diet feeding and streptozotocin compared to milk-fed controls. Surprisingly, the control yogurt exacerbated diabetes progression. Synbiotic yogurt beneficially modulated the composition of gut microbiota compared to milk; conversely, the control yogurt negatively modulated the gut microbiota by significantly increasing the abundance of detrimental bacteria like Proteobacteria and Enterobacteriaceae. In addition, the synbiotic yogurt protected intact pancreatic islet morphology compared to the milk control, while the commercial yogurt demonstrated worse effects on pancreatic physiology. These results suggest that our newly developed synbiotic yogurt protects against diabetes in mice and can be used as a modality to prevent diabetes progression.


Endocrinology ◽  
2020 ◽  
Vol 162 (1) ◽  
Author(s):  
Cheng Lin ◽  
YanYan Lin ◽  
Ji Luo ◽  
JunRu Yu ◽  
YaNi Cheng ◽  
...  

Abstract As advances are made in the field of developmental origins of health and disease, there is an emphasis on long-term influence of maternal environmental factors on offspring health. Maternal high-fat diet (HFD) consumption has been suggested to exert detrimental effects on cognitive function in offspring, but whether HFD-dependent brain remodeling can be transmitted to the next generations is still unclear. This study tested the hypothesis that HFD consumption during rat pregnancy and lactation multigenerationally influences male offspring hippocampal synaptic plasticity and cognitive function. We observed that hippocampus-dependent learning and memory was impaired in 3 generations from HFD-fed maternal ancestors (referred as F1-F3), as assessed by novel object recognition and Morris water maze tests. Moreover, maternal HFD exposure also affected electrophysiological and ultrastructure measures of hippocampal synaptic plasticity across generations. We observed that intranasal insulin replacement partially rescued hippocampal synaptic plasticity and cognitive deficits in F3 rats, suggesting central insulin resistance may play an important role in maternal diet-induced neuroplasticity impairment. Furthermore, maternal HFD exposure enhanced the palmitoylation of GluA1 critically involved in long-term potentiation induction, while palmitoylation inhibitor 2-bromopalmitate counteracts GluA1 hyperpalmitoylation and partially abolishes the detrimental effects of maternal diet on learning and memory in F3 offspring. Importantly, maternal HFD-dependent GluA1 hyperpalmitoylation was reversed by insulin replacement. Taken together, our data suggest that maternal HFD exposure multigenerationally influences adult male offspring hippocampal synaptic plasticity and cognitive performance, and central insulin resistance may serve as the cross-talk between maternal diet and cognitive impairment across generations.


Sign in / Sign up

Export Citation Format

Share Document