scholarly journals Consumption of Cooked Black Beans Stimulates a Cluster of Some Clostridia Class Bacteria Decreasing Inflammatory Response and Improving Insulin Sensitivity

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1182 ◽  
Author(s):  
Mónica Sánchez-Tapia ◽  
Irma Hernández-Velázquez ◽  
Edgar Pichardo-Ontiveros ◽  
Omar Granados-Portillo ◽  
Amanda Gálvez ◽  
...  

There is limited information on the effect of black beans (BB) as a source of protein and resistant starch on the intestinal microbiota. The purpose of the present work was to study the effect of cooked black beans with and without high fat and sugar (HF + S) in the diet on body composition, energy expenditure, gut microbiota, short-chain fatty acids, NF-κB, occluding and insulin signaling in a rat model and the area under the curve for glucose, insulin and incretins in healthy subjects. The consumption of BB reduced the percentage of body fat, the area under the curve of glucose, serum leptin, LPS, glucose and insulin concentrations and increased energy expenditure even in the presence of HF + S. These results could be mediated in part by modification of the gut microbiota, by increasing a cluster of bacteria in the Clostridia class, mainly R. bromii, C. eutactus, R. callidus, R. flavefaciens and B. pullicaecorum and by an increase in the concentration of fecal butyrate. In conclusion, the consumption of BB can be recommended to prevent insulin resistance and metabolic endotoxemia by modifying the gut microbiota. Finally, the groups fed BB showed lower abundance of hepatic FMO-3, even with a high-fat diet protecting against the production of TMAO and obesity.

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Chao Kang ◽  
Bin Wang ◽  
Kanakaraju Kaliannan ◽  
Xiaolan Wang ◽  
Hedong Lang ◽  
...  

ABSTRACT Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation. IMPORTANCE Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP. Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 456
Author(s):  
Mihai V. Curtasu ◽  
Valeria Tafintseva ◽  
Zachary A. Bendiks ◽  
Maria L. Marco ◽  
Achim Kohler ◽  
...  

The metabolome and gut microbiota were investigated in a juvenile Göttingen minipig model. This study aimed to explore the metabolic effects of two carbohydrate sources with different degrees of risk in obesity development when associated with a high fat intake. A high-risk (HR) high-fat diet containing 20% fructose was compared to a control lower-risk (LR) high-fat diet where a similar amount of carbohydrate was provided as a mix of digestible and resistant starch from high amylose maize. Both diets were fed ad libitum. Non-targeted metabolomics was used to explore plasma, urine, and feces samples over five months. Plasma and fecal short-chain fatty acids were targeted and quantified. Fecal microbiota was analyzed using genomic sequencing. Data analysis was performed using sparse multi-block partial least squares regression. The LR diet increased concentrations of fecal and plasma total short-chain fatty acids, primarily acetate, and there was a higher relative abundance of microbiota associated with acetate production such as Bacteroidetes and Ruminococcus. A higher proportion of Firmicutes was measured with the HR diet, together with a lower alpha diversity compared to the LR diet. Irrespective of diet, the ad libitum exposure to the high-energy diets was accompanied by well-known biomarkers associated with obesity and diabetes, particularly branched-chain amino acids, keto acids, and other catabolism metabolites.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mercè Hereu ◽  
Sara Ramos-Romero ◽  
Cristina Busquets ◽  
Lidia Atienza ◽  
Susana Amézqueta ◽  
...  

Abstract Food contains bioactive compounds that may prevent changes in gut microbiota associated with Westernized diets. The aim of this study is to explore the possible additive effects of d-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota and related risk factors during early stages in the development of fat-induced pre-diabetes. Male Sprague Dawley (SD) rats were fed a standard diet, or a high-fat (HF) diet supplemented with d-fagomine, EPA/DHA 1:1, a combination of both, or neither, for 24 weeks. The variables measured were fasting glucose and glucose tolerance, plasma insulin, liver inflammation, fecal/cecal gut bacterial subgroups and short-chain fatty acids (SCFAs). The animals supplemented with d-fagomine alone and in combination with ω-3 PUFAs accumulated less fat than those in the non-supplemented HF group and those given only ω-3 PUFAs. The combined supplements attenuated the high-fat-induced incipient insulin resistance (IR), and liver inflammation, while increasing the cecal content, the Bacteroidetes:Firmicutes ratio and the populations of Bifidobacteriales. The functional effects of the combination of d-fagomine and EPA/DHA 1:1 against gut dysbiosis and the very early metabolic alterations induced by a high-fat diet are mainly those of d-fagomine complemented by the anti-inflammatory action of ω-3 PUFAs.


2019 ◽  
Vol 149 (5) ◽  
pp. 747-754 ◽  
Author(s):  
Wanjun Fang ◽  
Hongliang Xue ◽  
Xu Chen ◽  
Ke Chen ◽  
Wenhua Ling

ABSTRACT Background Short-chain fatty acids (SCFAs) have been reported to ameliorate obesity. However, the underlying mechanisms require further investigation. Objective The aim of this study was to determine the role of butyrate, an SCFA, in the regulation of obesity, low-grade chronic inflammation, and alterations of microbiota composition in mice. Methods Male C57BL/6J mice, 4–5 wk of age, were divided into 3 groups (n = 8 mice/group): low-fat diet (LFD; 10% energy from fat), high-fat diet (HFD; 45% energy from fat), or high-fat diet plus sodium butyrate (HSB). HSB mice received sodium butyrate at a concentration of 0.1 M in drinking water for 12 wk. Measures of inflammation, obesity, and intestinal integrity were assessed. Serum lipopolysaccharide (LPS) concentrations were measured in the 3 groups. Fecal samples were collected for gut microbiota analysis. Results In HFD mice, body weight gain and hepatic triglyceride (TG), serum interleukin-6 (IL-6), and serum tumor necrosis factor (TNF)-α levels were 1–4 times higher than those in LFD mice (P < 0.05); they were 34–42% lower in HSB mice compared with HFD mice (P < 0.05). The HFD group had 28%–48% lower mRNA expression of both Tjp1 and Ocln in the ileum and colon compared with levels in LFD or HSB mice (P < 0.05), whereas there was no difference in expression levels between LFD and HSB mice. Furthermore, in HSB mice, serum LPS concentration was 53% lower compared with that in HFD mice but still 23% higher than that in LFD mice (P < 0.05). Results from principal component analysis showed that HSB and LFD mice had a similar gut microbiota structure, which was significantly different from that in HFD mice (P < 0.05). Conclusions Sodium butyrate administration beneficially changed HFD-induced gut microbiota composition and improved intestinal barrier, leading to lower serum LPS concentrations. These changes may correspond with improvements in obesity-related lipid accumulation and low-grade chronic inflammation.


2021 ◽  
Author(s):  
Zaiqi Han ◽  
Lu Yao ◽  
yue Zhong ◽  
Yang Xiao ◽  
Jing Gao ◽  
...  

Due to extremely poor systemic bioavailability, the mechanism by which curcumin increases energy expenditure remains unelucidated. Accumulating evidence suggests a strong association between the gut microbiota (GM) and energy metabolism....


Diabetes ◽  
2008 ◽  
Vol 57 (6) ◽  
pp. 1470-1481 ◽  
Author(s):  
P. D. Cani ◽  
R. Bibiloni ◽  
C. Knauf ◽  
A. Waget ◽  
A. M. Neyrinck ◽  
...  

mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Xiaoyu Gao ◽  
Songlin Chang ◽  
Shuangfeng Liu ◽  
Lei Peng ◽  
Jing Xie ◽  
...  

ABSTRACT Previous studies have shown that α-linolenic acid (ALA) has a significant regulatory effect on related disorders induced by high-fat diets (HFDs), but little is known regarding the correlation between the gut microbiota and disease-related multitissue homeostasis. We systematically investigated the effects of ALA on the body composition, glucose homeostasis, hyperlipidemia, metabolic endotoxemia and systemic inflammation, white adipose tissue (WAT) homeostasis, liver homeostasis, intestinal homeostasis, and gut microbiota of mice fed an HFD (HFD mice). We found that ALA improved HFD-induced multitissue metabolic disorders and gut microbiota disorders to various degrees. Importantly, we established a complex but clear network between the gut microbiota and host parameters. Several specific differential bacteria were significantly associated with improved host parameters. Rikenellaceae_RC9_gut_group and Parasutterella were positively correlated with HFD-induced “harmful indicators” and negatively correlated with “beneficial indicators.” Intriguingly, Bilophila showed a strong negative correlation with HFD-induced multitissue metabolic disorders and a significant positive correlation with most beneficial indicators, which is different from its previous characterization as a “potentially harmful genus.” Turicibacter might be the key beneficial bacterium for ALA-improved metabolic endotoxemia, while Blautia might play an important role in ALA-improved gut barrier integrity and anti-inflammatory effects. The results suggested that the gut microbiota, especially some specific bacteria, played an important role in the process of ALA-improved multitissue homeostasis in HFD mice, and different bacteria might have different divisions of regulation. IMPORTANCE Insufficient intake of n-3 polyunsaturated fatty acids is an important issue in modern Western-style diets. A large amount of evidence now suggests that a balanced intestinal microecology is considered an important part of health. Our results show that α-linolenic acid administration significantly improved the host metabolic phenotype and gut microbiota of mice fed a high-fat diet, and there was a correlation between the improved gut microbiota and metabolic phenotype. Some specific bacteria may play a unique regulatory role. Here, we have established correlation networks between gut microbiota and multitissue homeostasis, which may provide a new basis for further elucidating the relationship between the gut microbiota and host metabolism.


Sign in / Sign up

Export Citation Format

Share Document