scholarly journals Effect of a long-term high-protein diet on survival, obesity development, and gut microbiota in mice

2016 ◽  
Vol 310 (11) ◽  
pp. E886-E899 ◽  
Author(s):  
Pia Kiilerich ◽  
Lene Secher Myrmel ◽  
Even Fjære ◽  
Qin Hao ◽  
Floor Hugenholtz ◽  
...  

Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein/sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue, affecting pathways related to metabolism and inflammation. Analysis of fecal bacterial DNA using the Mouse Intestinal Tract Chip revealed significant changes in the composition of the gut microbiota in relation to host age and dietary fat content, but not the protein/sucrose ratio. Accordingly, dietary fat rather than the protein/sucrose ratio or adiposity is a major driver shaping the gut microbiota, whereas the effect of a high-fat diet on survival is dependent on the protein/sucrose ratio.

2020 ◽  
Vol 96 (6) ◽  
Author(s):  
Sarah L Becker ◽  
Edna Chiang ◽  
Anna Plantinga ◽  
Hannah V Carey ◽  
Garret Suen ◽  
...  

ABSTRACT Artificial sweeteners have been shown to induce glucose intolerance by altering the gut microbiota; however, little is known about the effect of stevia. Here, we investigate whether stevia supplementation induces glucose intolerance by altering the gut microbiota in mice, hypothesizing that stevia would correct high fat diet-induced glucose intolerance and alter the gut microbiota. Mice were split into four treatment groups: low fat, high fat, high fat + saccharin and high fat + stevia. After 10 weeks of treatment, mice consuming a high fat diet (60% kcal from fat) developed glucose intolerance and gained more weight than mice consuming a low fat diet. Stevia supplementation did not impact body weight or glucose intolerance. Differences in species richness and relative abundances of several phyla were observed in low fat groups compared to high fat, stevia and saccharin. We identified two operational taxonomic groups that contributed to differences in beta-diversity between the stevia and saccharin groups: Lactococcus and Akkermansia in females and Lactococcus in males. Our results demonstrate that stevia does not rescue high fat diet-induced changes in glucose tolerance or the microbiota, and that stevia results in similar alterations to the gut microbiota as saccharin when administered in concordance with a high fat diet.


2001 ◽  
Vol 280 (2) ◽  
pp. R504-R509 ◽  
Author(s):  
L. Lin ◽  
R. Martin ◽  
A. O. Schaffhauser ◽  
D. A. York

Dietary induced obesity in rodents is associated with a resistance to leptin. We have investigated the hypothesis that dietary fat per se alters the feeding response to peripheral leptin in rats that were fed either their habitual high- or low-fat diet or were naively exposed to the alternative diet. Osborne-Mendel rats were adapted to either high- or low-fat diet. Food-deprived rats were given either leptin (0.5 mg/kg body wt ip) or saline, after which they were provided with either their familiar diet or the alternative diet. Food intake of rats adapted and tested with the low-fat diet was reduced 4 h after leptin injection, whereas rats adapted and tested with a high-fat diet did not respond to leptin. Leptin was injected again 1 and 5 days after the high-fat diet-adapted rats were switched to the low-fat diet. Leptin reduced the food intake on both days. In contrast, when low-fat diet-adapted rats were switched to a high-fat diet, the leptin inhibitory response was present on day 1 but not observed on day 5. Peripheral injection of leptin increased serum corticosterone level and decreased hypothalamic neuropeptide Y mRNA expression in rats fed the low-fat but not the high-fat diet for 20 days. The data suggest that dietary fat itself, rather than obesity, may induce leptin resistance within a short time of exposure to a high-fat diet.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Hengjun Du ◽  
Xiaoqiong Cao ◽  
Yanhui Han ◽  
Min Gu ◽  
Hang Xiao

Abstract Objectives Many food products contain inorganic nanoparticles (NPs), such as titanium dioxide (TiO2) NPs. There is increasing concern about the potential unintended health risks associated with foodborne TiO2 NPs in certain populations, such as the obese. The purpose of this study was to determine the adverse effects of TiO2 NPs in obese individuals, the molecular mechanism involved and the potential role of gut microbiota in mediating the adverse effects. Methods Two types of TiO2 (30 nm and E171-Food grade TiO2) were mixed with mouse diet at 0.1 wt% and fed to two populations of mice (high-fat diet-fed obese mice and non-obese mice). Meanwhile, fecal samples from the above groups of mice were collected weekly for transplanting to four groups of mice fed a low-fat diet for 10 weeks. 16 s rRNA gene amplicon sequencing, histological analysis, immunohistochemistry, ELISA and SCFAs analysis were utilized to characterize the composition of the microbiota, inflammation status, and the effects of altered gut microbiota on the inflammation status of the mouse colon. Results TiO2 NPs significantly altered the composition of gut microbiota with stronger alterations in the high-fat diet-fed obese mice than the low-fat diet-fed non-obese mice. The abundance of inflammation-related cytokines (e.g., IL-10, IL-12p70, and IL-17) and myeloperoxidase (MPO) in the mouse colonic mucosa were significantly altered by TiO2 NPs to produce an inflammatory state. TiO2 NPs decreased the cecal levels of SCFAs such as butyrate. Moreover, the magnitude of the above alteration was higher in the obese mice than in the non-obese mice. After 10 weeks of microbial transplant, microbiota from the mice consuming a high-fat diet with TiO2 NPs led to an increase of pro-inflammatory cytokines, loss of healthy colonic morphology, and infiltration of immune cells in the colon of the low-fat diet-fed recipient mice, indicating a significant colonic inflammation. Conclusions TiO2 NPs altered gut microbiota in both obese and non-obese mice, with stronger effects in the obese mice, and the alteration of gut microbiota led to colonic inflammation in the mice. Overall, these findings provided a valuable new perspective on the potential adverse effects and appropriate mechanisms of foodborne TiO2 NPs among populations with different obese status. Funding Sources USDA/NIFA competitive grants to Hang Xiao.


2016 ◽  
Vol 311 (6) ◽  
pp. E989-E997 ◽  
Author(s):  
Denise E. Lackey ◽  
Raul G. Lazaro ◽  
Pingping Li ◽  
Andrew Johnson ◽  
Angelina Hernandez-Carretero ◽  
...  

Consumption of excess calories results in obesity and insulin resistance and has been intensively studied in mice and humans. The objective of this study was to determine the specific contribution of dietary fat rather than total caloric intake to the development of obesity-associated insulin resistance. We used an intragastric feeding method to overfeed excess calories from a low-fat diet (and an isocalorically matched high-fat diet) through a surgically implanted gastric feeding tube to generate obesity in wild-type mice followed by hyperinsulinemic-euglycemic clamp studies to assess the development of insulin resistance. We show that overfeeding a low-fat diet results in levels of obesity similar to high-fat diet feeding in mice. However, despite a similar body weight, obese high-fat diet-fed mice are more insulin resistant than mice fed an isocaloric low-fat diet. Therefore, increased proportion of calories from dietary fat further potentiates insulin resistance in the obese state. Furthermore, crossover diet studies revealed that reduction in dietary fat composition improves glucose tolerance in obesity. In the context of the current obesity and diabetes epidemic, it is particularly important to fully understand the role of dietary macronutrients in the potentiation and amelioration of disease.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yusaku Mori ◽  
Michishige Terasaki ◽  
Munenori Hiromura ◽  
Tomomi Saito ◽  
Hideki Kushima ◽  
...  

Abstract Background Excess fat deposition could induce phenotypic changes of perivascular adipose tissue (PVAT remodeling), which may promote the progression of atherosclerosis via modulation of adipocytokine secretion. However, it remains unclear whether and how suppression of PVAT remodeling could attenuate vascular injury. In this study, we examined the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitor, luseogliflozin on PVAT remodeling and neointima formation after wire injury in mice. Methods Wilt-type mice fed with low-fat diet (LFD) or high-fat diet (HFD) received oral administration of luseogliflozin (18 mg/kg/day) or vehicle. Mice underwent bilateral femoral artery wire injury followed by unilateral removal of surrounding PVAT. After 25 days, injured femoral arteries and surrounding PVAT were analyzed. Results In LFD-fed lean mice, neither luseogliflozin treatment or PVAT removal attenuated the intima-to-media (I/M) ratio of injured arteries. However, in HFD-fed mice, luseogliflozin or PVAT removal reduced the I/M ratio, whereas their combination showed no additive reduction. In PVAT surrounding injured femoral arteries of HFD-fed mice, luseogliflozin treatment decreased the adipocyte sizes. Furthermore, luseogliflozin reduced accumulation of macrophages expressing platelet-derived growth factor-B (PDGF-B) and increased adiponectin gene expression. Gene expression levels of Pdgf-b in PVAT were correlated with the I/M ratio. Conclusions Our present study suggests that luseogliflozin could attenuate neointimal hyperplasia after wire injury in HFD-fed mice partly via suppression of macrophage PDGF-B expression in PVAT. Inhibition of PVAT remodeling by luseogliflozin may be a novel therapeutic target for vascular remodeling after angioplasty.


2009 ◽  
Vol 296 (4) ◽  
pp. E898-E903 ◽  
Author(s):  
Gabriel Paulino ◽  
Claire Barbier de la Serre ◽  
Trina A. Knotts ◽  
Pieter J. Oort ◽  
John W. Newman ◽  
...  

The vagal afferent pathway is important in short-term regulation of food intake, and decreased activation of this neural pathway with long-term ingestion of a high-fat diet may contribute to hyperphagic weight gain. We tested the hypothesis that expression of genes encoding receptors for orexigenic factors in vagal afferent neurons are increased by long-term ingestion of a high-fat diet, thus supporting orexigenic signals from the gut. Obesity-prone (DIO-P) rats fed a high-fat diet showed increased body weight and hyperleptinemia compared with low-fat diet-fed controls and high-fat diet-induced obesity-resistant (DIO-R) rats. Expression of the type I cannabinoid receptor and growth hormone secretagogue receptor 1a in the nodose ganglia was increased in DIO-P compared with low-fat diet-fed controls or DIO-R rats. Shifts in the balance between orexigenic and anorexigenic signals within the vagal afferent pathway may influence food intake and body weight gain induced by high fat diets.


2014 ◽  
Vol 3 ◽  
Author(s):  
Craig T. Angle ◽  
Joseph J. Wakshlag ◽  
Robert L. Gillette ◽  
Todd Steury ◽  
Pamela Haney ◽  
...  

AbstractA previous work suggests that dietary fat may influence canine olfaction. The present study evaluated whether olfactory performance could be influenced by forms of dietary fat and exercise. Seventeen certified detection dogs were fed three different diets (high fat, low fat or high polyunsaturated fat) for 12 weeks. After 12 weeks, olfactory testing was performed using a scent wheel in an olfaction laboratory using three explosive materials. The dogs completed eight to twelve scent trials before and after a 30 min treadmill exercise on five consecutive days. A mixed-effect logistic regression model was used to examine how diet, pre- or post-exercise, trial number, odourant, mass of target and target position influenced the probability of dogs alerting on the target odour. There were no significant changes in the dog's ability to find a target odour at threshold amounts. Dogs were 1·42 (1·08, 1·87; 95 % CI) times as likely to find a target on the high polyunsaturated fat diet relative to the high-fat diet (P = 0·009). The low-fat diet was not significantly different from either the high-fat diet or the high polyunsaturated fat diet (P = 0·12). Dogs were 1·49 (1·26, 1·76; 95 % CI) times as likely to find a target prior to exercise relative to after exercise (P < 0·001). Dogs on the high PUFA diet utilising maize oil showed mild improvement in olfaction. The exact reasons are unknown; however, the higher relative amount of linoleic acid in the diet may play a role in olfactory sensation which warrants further examination of optimal diets for detection dogs.


Sign in / Sign up

Export Citation Format

Share Document