scholarly journals The Human Milk Oligosaccharides 3‐FL, LNnT, and LDFT Attenuate TNF‐α Induced Inflammation in Fetal Intestinal Epithelial Cells In Vitro Through Shedding or Interacting with TNF Receptor 1

2021 ◽  
pp. 2000425
Author(s):  
Lianghui Cheng ◽  
Chunli Kong ◽  
Wenjia Wang ◽  
Andre Groeneveld ◽  
Arjen Nauta ◽  
...  
2021 ◽  
Author(s):  
Chunli Kong ◽  
Martin Beukema ◽  
Min Wang ◽  
Bart J. de Haan ◽  
Paul de Vos

Human milk oligosaccharides 2′-FL and pectins inhibited pathogen adhesion through modulating glycosylation and inflammatory genes in intestinal epithelial cells.


2020 ◽  
Vol 150 (8) ◽  
pp. 2077-2088 ◽  
Author(s):  
Chunli Kong ◽  
Lianghui Cheng ◽  
Guido Krenning ◽  
Jolien Fledderus ◽  
Bart J de Haan ◽  
...  

ABSTRACT Background The intestinal epithelial cells, food molecules, and gut microbiota are continuously exposed to intestinal peristaltic shear force. Shear force may impact the crosstalk of human milk oligosaccharides (hMOs) with commensal bacteria and intestinal epithelial cells. Objectives We investigated how hMOs combined with intestinal peristaltic shear force impact intestinal epithelial cells and crosstalk with a commensal bacterium. Methods We applied the Ibidi system to mimic intestinal peristaltic shear force. Caco-2 cells were exposed to a shear force (5 dynes/cm2) for 3 d, and then stimulated with the hMOs, 2′-fucosyllactose (2′-FL), 3-FL, and lacto-N-triose II (LNT2). In separate experiments, Lactobacillus plantarumWCFS1 adhesion to Caco-2 cells was studied with the same hMOs and shear force. Effects were tested on gene expression of glycocalyx-related molecules (glypican 1 [GPC1], hyaluronan synthase 1 [HAS1], HAS2, HAS3, exostosin glycosyltransferase 1 [EXT1], EXT2), defensin β-1 (DEFB1), and tight junction (tight junction protein 1 [TJP1], claudin 3 [CLDN3]) in Caco-2 cells. Protein expression of tight junctions was also quantified. Results Shear force dramatically decreased gene expression of the main enzymes for making glycosaminoglycan side chains (HAS3 by 43.3% and EXT1 by 68.7%) (P <0.01), but did not affect GPC1 which is the gene responsible for the synthesis of glypican 1 which is a major protein backbone of glycocalyx. Expression of DEFB1, TJP1, and CLDN3 genes was decreased 60.0–94.9% by shear force (P <0.001). The presence of L. plantarumWCFS1 increased GPC1, HAS2, HAS3, and ZO-1 expression by 1.78- to 3.34-fold (P <0.05). Under shear force, all hMOs significantly stimulated DEFB1 and ZO-1, whereas only 3-FL and LNT2 enhanced L. plantarumWCFS1 adhesion by 1.85- to 1.90-fold (P <0.01). Conclusions 3-FL and LNT2 support the crosstalk between the commensal bacterium L. plantarumWCFS1 and Caco-2 intestinal epithelial cells, and shear force can increase the modulating effects of hMOs.


2015 ◽  
Vol 145 (9) ◽  
pp. 1992-1998 ◽  
Author(s):  
Sara Gonia ◽  
Michele Tuepker ◽  
Timothy Heisel ◽  
Chloe Autran ◽  
Lars Bode ◽  
...  

2009 ◽  
Vol 296 (4) ◽  
pp. G850-G859 ◽  
Author(s):  
Michio Onizawa ◽  
Takashi Nagaishi ◽  
Takanori Kanai ◽  
Ken-ichi Nagano ◽  
Shigeru Oshima ◽  
...  

Treatment with anti-TNF-α MAb has been accepted as a successful maintenance therapy for patients with inflammatory bowel diseases (IBD). Moreover, it has been recently reported that blockade of TNF receptor (TNFR) 1 signaling in infiltrating hematopoietic cells may prevent the development of colitis-associated cancer (CAC). However, it remains unclear whether the TNF-α signaling in epithelial cells is involved in the development of CAC. To investigate this, we studied the effects of anti-TNF-α MAb in an animal model of CAC by administration of azoxymethane (AOM) followed by sequential dextran sodium sulfate (DSS) ingestion. We observed that the NF-κB pathway is activated in colonic epithelia from DSS-administered mice in association with upregulation of TNFR2 rather than TNFR1. Immunoblot analysis also revealed that the TNFR2 upregulation accompanied by the NF-κB activation is further complicated in CAC tissues induced in AOM/DSS-administered mice compared with the nontumor area. Such NF-κB activity in the epithelial cells is significantly suppressed by the treatment of MP6-XT22, an anti-TNF-α MAb. Despite inability to reduce the severity of colitis, sequential administration of MP6-XT22 reduced the numbers and size of tumors in association with the NF-κB inactivation. Taken together, present studies suggest that the TNFR2 signaling in intestinal epithelial cells may be directly involved in the development of CAC with persistent colitis and imply that the maintenance therapy with anti-TNF-α MAb may prevent the development of CAC in patients with long-standing IBD.


2017 ◽  
Vol 312 (2) ◽  
pp. G123-G132 ◽  
Author(s):  
Yujie Shen ◽  
Min Zhou ◽  
Junkai Yan ◽  
Zizhen Gong ◽  
Yongtao Xiao ◽  
...  

Inflammatory bowel diseases (IBDs) are chronic, inflammatory disorders of the gastrointestinal tract with unclear etiologies. Intestinal epithelial cells (IECs), containing crypt and villus enterocytes, occupy a critical position in the pathogenesis of IBDs and are a major producer of immunoregulatory cytokines and a key component of the intact epithelial barrier. Previously, we have reported that miR-200b is involved in the progression of IBDs and might maintain the integrity of the intestinal epithelial barrier via reducing the loss of enterocytes. In this study, we further investigated the impact of miR-200b on intestinal epithelial inflammation and tight junctions in two distinct differentiated states of Caco-2 cells after TNF-α treatment. We demonstrated that TNF-α-enhanced IL-8 expression was decreased by microRNA (miR)-200b in undifferentiated IECs. Simultaneously, miR-200b could alleviate TNF-α-induced tight junction (TJ) disruption in well-differentiated IECs by reducing the reduction in the transepithelial electrical resistance (TEER), inhibiting the increase in paracellular permeability, and preventing the morphological redistribution of the TJ proteins claudin 1 and ZO-1. The expression levels of the JNK/c-Jun/AP-1 and myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) pathways were attenuated in undifferentiated and differentiated enterocytes, respectively. Furthermore, a dual-luciferase reporter gene detection system provided direct evidence that c-Jun and MLCK were the specific targets of miR-200b. Collectively, our results highlighted that miR-200b played a positive role in IECs via suppressing intestinal epithelial IL-8 secretion and attenuating TJ damage in vitro, which suggested that miR-200b might be a promising strategy for IBD therapy. NEW & NOTEWORTHY This was the first time that the inhibitory role of miR-200b on intestinal epithelial inflammation and paracellular permeability has been reported. Moreover, we further divided the intestinal epithelial cells (IECs) into two differentiated conditions and investigated the distinct impacts of miR-200b. Finally, we put forward and proved that myosin light chain kinase (MLCK) was a novel target of miR-200b.


2004 ◽  
Vol 287 (4) ◽  
pp. G836-G844 ◽  
Author(s):  
Karine Vidal ◽  
Patrick Serrant ◽  
Brigitte Schlosser ◽  
Peter van den Broek ◽  
Florence Lorget ◽  
...  

Receptor activator of NF-κB (RANK) and its ligand (RANKL) are important members of the TNF receptor (TNFR) and TNF superfamilies, respectively. RANK is expressed on osteoclasts, T-lymphocytes, and dendritic cells, and its ligation with RANKL leads to cellular activation. However, another member of the TNFR family, osteoprotegerin (OPG), acts as a decoy receptor, binding to RANKL and preventing its interaction with RANK. Furthermore, OPG also binds TNF-related apoptosis-inducing ligand (TRAIL), an important regulator of cell survival. OPG is therefore an important regulator of bone metabolism and immune responses. Although intestinal epithelial cells (IEC) express some members of the TNF/TNFR superfamilies, the roles of OPG and RANKL in the intestinal mucosa has not been investigated. Here, we report that various human IEC lines constitutively express OPG mRNA and protein as well as mRNA for RANKL. Furthermore, human colonic epithelium constitutively expressed OPG, and this expression was increased in inflamed tissue. All of the IEC lines tested released OPG into the culture supernatant under standard culture conditions. Whereas TNF-α increased OPG protein secretion by HT29 cells, the cytokines IL-1β and IFN-γ had little, if any, effect. Furthermore, the culture supernatant from untreated HT29 cells abrogated TRAIL-induced inhibition of Jurkat T-cell proliferation and inhibited osteoclast activity in an in vitro model of bone resorption. Taken together, our data indicate that OPG is constitutively produced by IEC, could be upregulated by TNF-α, and is biologically active. Thus IEC-derived OPG may represent an important mucosal immunoregulatory factor and may be involved in bone physiology.


2009 ◽  
Vol 20 (20) ◽  
pp. 4412-4423 ◽  
Author(s):  
Arianne L. Theiss ◽  
Aaron K. Jenkins ◽  
Ngozi I. Okoro ◽  
Jan-Michael A. Klapproth ◽  
Didier Merlin ◽  
...  

Expression of prohibitin 1 (PHB), a multifunctional protein in the cell, is decreased during inflammatory bowel disease (IBD). Little is known regarding the regulation and role of PHB during intestinal inflammation. We examined the effect of tumor necrosis factor alpha (TNF-α), a cytokine that plays a central role in the pathogenesis of IBD, on PHB expression and the effect of sustained PHB expression on TNF-α activation of nuclear factor-kappa B (NF-κB) and epithelial barrier dysfunction, two hallmarks of intestinal inflammation. We show that TNF-α decreased PHB protein and mRNA abundance in intestinal epithelial cells in vitro and in colon mucosa in vivo. Sustained expression of prohibitin in intestinal epithelial cells in vitro and in vivo (prohibitin transgenic mice, PHB TG) resulted in a marked decrease in TNF-α–induced nuclear translocation of the NF-κB protein p65, NF-κB/DNA binding, and NF-κB–mediated transcriptional activation despite robust IκB-α phosphorylation and degradation and increased cytosolic p65. Cells overexpressing PHB were protected from TNF-α–induced increased epithelial permeability. Expression of importin α3, a protein involved in p50/p65 nuclear import, was decreased in cells overexpressing PHB and in colon mucosa of PHB TG mice. Restoration of importin α3 levels sustained NF-κB activation by TNF-α during PHB transfection. These results suggest that PHB inhibits NF-κB nuclear translocation via a novel mechanism involving alteration of importin α3 levels. TNF-α decreases PHB expression in intestinal epithelial cells and restoration of PHB expression in these cells can protect against the deleterious effects of TNF-α and NF-κB on barrier function.


Sign in / Sign up

Export Citation Format

Share Document