scholarly journals Front Cover: Vitamin D Rescues Pancreatic β Cell Dysfunction due to Iron Overload via Elevation of the Vitamin D Receptor and Maintenance of Ca 2+ Homeostasis

2021 ◽  
Vol 65 (4) ◽  
pp. 2170008
Author(s):  
Yoo Jeong Lee ◽  
Gyu Hee Kim ◽  
Sang Ick Park ◽  
Joo Hyun Lim
Life Sciences ◽  
2021 ◽  
pp. 119312
Author(s):  
Yanting Yuan ◽  
Ji Zhou ◽  
Ruixin Hu ◽  
Linhai Zou ◽  
Lixia Ji ◽  
...  

2018 ◽  
Vol 234 (6) ◽  
pp. 8411-8425 ◽  
Author(s):  
Mohammad Javad Saeedi Borujeni ◽  
Ebrahim Esfandiary ◽  
Azar Baradaran ◽  
Ali Valiani ◽  
Mustafa Ghanadian ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
pp. 44-52
Author(s):  
A.P. Shumilov ◽  
◽  
M.Yu. Semchenkova ◽  
D.S. Mikhalik ◽  
T.G. Avdeeva ◽  
...  

Vitamin D plays an important role in decreasing the risk of developing type 2 diabetes by influencing calcium metabolism, thereby reducing β-cell dysfunction and preventing insulin resistance. The findings of research works are contradictory enough, although some of them demonstrated an inverse relationship between vitamin D levels and the incidence of type 2 diabetes. The article describes the biological mechanisms of relationships between vitamin D levels and type 2 diabetes, reviews the results of the studies conducted and summarizes the available data. Key words: vitamin D, type 2 diabetes mellitus, insulin resistance


2010 ◽  
Vol 30 (6) ◽  
pp. 445-453 ◽  
Author(s):  
Marta Michalska ◽  
Gabriele Wolf ◽  
Reinhard Walther ◽  
Philip Newsholme

Various pancreatic β-cell stressors including cytokines and saturated fatty acids are known to induce oxidative stress, which results in metabolic disturbances and a reduction in insulin secretion. However, the key mechanisms underlying dysfunction are unknown. We investigated the effects of prolonged exposure (24 h) to pro-inflammatory cytokines, H2O2 or PA (palmitic acid) on β-cell insulin secretion, ATP, the NADPH oxidase (nicotinamide adenine dinucleotide phosphate oxidase) component p47phox and iNOS (inducible nitric oxide synthase) levels using primary mouse islets or clonal rat BRIN-BD11 β-cells. Addition of a pro-inflammatory cytokine mixture [IL-1β (interleukin-1β), TNF-α (tumour necrosis factor-α) and IFN-γ (interferon-γ)] or H2O2 (at sub-lethal concentrations) inhibited chronic (24 h) levels of insulin release by at least 50% (from islets and BRIN-BD11 cells), while addition of the saturated fatty acid palmitate inhibited acute (20 min) stimulated levels of insulin release from mouse islets. H2O2 decreased ATP levels in the cell line, but elevated p47phox and iNOS levels as did cytokine addition. Similar effects were observed in mouse islets with respect to elevation of p47phox and iNOS levels. Addition of antioxidants SOD (superoxide dismutase), Cat (catalase) and NAC (N-acetylcysteine) attenuated H2O2 or the saturated fatty acid palmitate-dependent effects, but not cytokine-induced dysfunction. However, specific chemical inhibitors of NADPH oxidase and/or iNOS appear to significantly attenuate the effects of cytokines, H2O2 or fatty acids in islets. While pro-inflammatory cytokines are known to increase p47phox and iNOS levels in β-cells, we now report that H2O2 can increase levels of the latter two proteins, suggesting a key role for positive-feedback redox sensitive regulation of β-cell dysfunction.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shereen A. Mohamed ◽  
Nora E. Badawi ◽  
Hoiyda A. AbdelRasol ◽  
Hossam M. AbdelAziz ◽  
Nirvana A. Khalaf ◽  
...  

Critical illness hyperglycemia (CIH) is common in the pediatric intensive care unit (PICU). Increased glucose production, insulin resistance (IR), and pancreatic β-cell dysfunction are responsible mechanisms. We aimed to investigate β-cell function in the PICU and to uncover its relation to clinical and laboratory variables and ICU mortality. We prospectively recruited 91 children. Pancreatic β-cell function was assessed by using a homeostasis model assessment (HOMA)-β. Patients with β-cell function <40.0% had significantly higher Pediatric Risk of Mortality III (PRISM III) scores, higher rates of a positive C-reactive protein (CRP), lower IR, and a longer hospital stay. The patients with 40–80% β-cell function had the highest IR. Intermediate IR was found when the β-cell function was >80%. ICU survivors had better β-cell function than ICU non-survivors. A multivariate logistic regression analysis revealed that higher PRISM III score and HOMA-β <80.0% were significant predictors of mortality. In conclusion, β-cell dysfunction is prevalent among PICU patients and influences patient morbidity and mortality.


Sign in / Sign up

Export Citation Format

Share Document