CYP26B1 declines postnatally in Sertoli cells independently of androgen action in the mouse testis

2019 ◽  
Vol 87 (1) ◽  
pp. 66-77 ◽  
Author(s):  
Nadia Y. Edelsztein ◽  
Kenichi Kashimada ◽  
Helena F. Schteingart ◽  
Rodolfo A. Rey
Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1759-1766 ◽  
Author(s):  
K. Yomogida ◽  
H. Ohtani ◽  
H. Harigae ◽  
E. Ito ◽  
Y. Nishimune ◽  
...  

GATA-1 is an essential factor for the transcriptional activation of erythroid-specific genes, and is also abundantly expressed in a discrete subset of cells bordering the seminiferous epithelium in tubules of the murine testis. In examining normal and germ-line defective mutant mice, we show here that GATA-1 is expressed only in the Sertoli cell lineage in mouse testis. GATA-1 expression in Sertoli cells is induced concomitantly with the first wave of spermatogenesis, and GATA-1-positive cells are uniformly distributed among all tubules during prepubertal testis development. However, the number of GATA-1-positive cells declines thereafter and were found only in the peripheral zone of seminiferous tubules in stages VII, VIII and IX of spermatogenesis in the adult mouse testis. In contrast, virtually every Sertoli cell in mutant W/Wv, jsd/jsd or cryptorchid mice (all of which lack significant numbers of germ cells) expresses GATA-1, thus showing that the expression of this transcription factor is negatively controlled by the maturing germ cells. These observations suggest that transcription factor GATA-1 is a developmental stage- and spermatogenic cycle-specific regulator of gene expression in Sertoli cells.


Author(s):  
Zi-Yang Sheng ◽  
Na Gao ◽  
Zhao-Yang Wang ◽  
Xiao-Yun Cui ◽  
De-Shan Zhou ◽  
...  

2005 ◽  
Vol 72 (5) ◽  
pp. 1151-1160 ◽  
Author(s):  
K.A.L. Tan ◽  
K.J. Turner ◽  
P.T.K. Saunders ◽  
G. Verhoeven ◽  
K. De Gendt ◽  
...  

Reproduction ◽  
2006 ◽  
Vol 131 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Olga Gómez ◽  
Amparo Romero ◽  
José Terrado ◽  
José E Mesonero

GLUT8 is a facilitative glucose transporter expressed at high levels in the testis. In this study, we analyzed the GLUT8 expression in mouse testis during spermatogenesis by RT–PCR, Western blot and immunohistochemistry methods. Our results show that GLUT8 expression is limited to spermatids and spermatozoa in the testis. Expression begins when round spermatids are formed at postnatal day 24. The expression persists throughout spermiogenesis, and it is also detected in spermatozoa, but it is absent in more immature germ cells, Sertoli cells and interstitial tissue. GLUT8 immunoreactivity is always restricted to the acrosomic system in a manner that matches the acrosome system formation. The GLUT8 expression is mainly associated with the acrosomic membrane in the acrosome, although significant immunoreactivity is also found inside the acrosomic lumen. The specific GLUT8 location suggests that this transporter plays a pivotal role in the fuel supply of spermatozoa, and in the traffic of sugars during the capacitation and fertilization processes.


2018 ◽  
Vol 179 (3) ◽  
pp. R143-R150 ◽  
Author(s):  
Ilpo Huhtaniemi

The two pituitary gonadotrophins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and in particular LH-stimulated high intratesticular testosterone (ITT) concentration, are considered crucial for spermatogenesis. We have revisited these concepts in genetically modified mice, one being theLH receptor(R)-knockout mouse (LuRKO), the other a transgenic mouse expressing in Sertoli cells a highly constitutively active mutatedFshr(Fshr-CAM). It was found that full spermatogenesis was induced by exogenous testosterone treatment in LuRKO mice at doses that restored ITT concentration to a level corresponding to the normal circulating testosterone level in WT mice, ≈5 nmol/L, which is 1.4% of the normal high ITT concentration. When hypogonadal LuRKO and Fshr-CAM mice were crossed, the double-mutant mice with strong FSH signaling, but minimal testosterone production, showed near-normal spermatogenesis, even when their residual androgen action was blocked with the strong antiandrogen flutamide. In conclusion, our findings challenge two dogmas of the hormonal regulation of male fertility: (1) high ITT concentration is not necessary for spermatogenesis and (2) strong FSH stimulation can maintain spermatogenesis without testosterone. These findings have clinical relevance for the development of hormonal male contraception and for the treatment of idiopathic oligozoospermia.


2018 ◽  
Author(s):  
Jingjing Wang ◽  
Jinmei Li ◽  
Yunzhao Gu ◽  
Qin Xia ◽  
Weixiang Song ◽  
...  

AbstractAndrogen signaling plays a pivotal role in spermatogenesis, but the molecular mechanisms underlying androgen action in this process are unclear. Specifically, it is unknown if the androgen receptor (AR) is expressed in germ cells. Thus it’s interesting to reveal how androgen induces differentiation of spermatogonial progenitor cells (SPCs) in the niche. Here we observed the AR is primarily expressed in pre-spermatogonia of mice 2 days post partum (dpp), absent before spermatogenesis onset, and then expressed in surrounding Sertoli cells. Then we examined a regulatory role of the AR in spermatogenesis using a SPCs-Sertoli cells co-culture system, and demonstrated that androgen negatively regulated Plzf (the gene for stemness maintenance of SPCs). Additionally, we identified Gata2 as a target of AR in Sertoli cells, and demonstrated that Wilms tumor 1 (WT1) and β1-integrin as two putative intermediate molecules to transfer differentiation signals to SPCs, which was further verified using androgen pharmacological-deprivation mice model. These results demonstrate a regulatory pattern of androgen in SPCs niche in an indirect way via multiple steps of signal transduction.


2005 ◽  
Vol 17 (9) ◽  
pp. 84
Author(s):  
M. Sarraj ◽  
P. J. McClive ◽  
K. L. Loveland ◽  
A. H. Sinclair

We present a detailed study on the expression pattern of Wsb2 in the mouse foetal and adult gonad. Wsb2 expression was analysed during mouse embryogenesis by whole-mount, section in situ hybridisation and immunohistochemistry. Wsb2 was found to be expressed in the developing mouse gonads from 11.5 dpc to 16.5 dpc. Expression is initially equal in both sexes from 10.5 dpc until 12.0 dpc, then it persists in the male gonad. Wsb2 expression was confined to the cords in both Sertoli cell and germ cells. Other sites of Wsb2 embryonic expression were the somites, dorsal root ganglia and the lateral mantle layer of the neural tube. mRNA encoding Wsb2 and Wsb2 protein has been detected in the newborn testis in both gonocytes and Sertoli cells. Wsb2 mRNA in the adult mouse testis was observed in Sertoli cells, spermatogonia, spermatocytes and the corresponding Wsb2 protein expression was in pachytene spermatocytes, round and elongated spermatids, Sertoli cells and Leydig cells. The differential expression of Wsb2 in male versus female embryonic gonads suggests it may play a role in mammalian sex determination during embryonic development and its expression in the first wave of spermatogenesis and in the adult suggests a later role in spermatogenesis.


1998 ◽  
Vol 203 (2) ◽  
pp. 323-333 ◽  
Author(s):  
Jeannie Karl ◽  
Blanche Capel

Sign in / Sign up

Export Citation Format

Share Document