scholarly journals Gradient rotating outer volume excitation (GROOVE): A novel method for single-shot two-dimensional outer volume suppression

2014 ◽  
Vol 73 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Nathaniel J. Powell ◽  
Albert Jang ◽  
Jang-Yeon Park ◽  
Julien Valette ◽  
Michael Garwood ◽  
...  
AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 909-912
Author(s):  
Ronald J. Epstein ◽  
John A. Rule ◽  
Donald B. Bliss

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyoshi Masuyama ◽  
Tomoaki Higo ◽  
Jong-Kook Lee ◽  
Ryohei Matsuura ◽  
Ian Jones ◽  
...  

AbstractIn contrast to hypertrophic cardiomyopathy, there has been reported no specific pattern of cardiomyocyte array in dilated cardiomyopathy (DCM), partially because lack of alignment assessment in a three-dimensional (3D) manner. Here we have established a novel method to evaluate cardiomyocyte alignment in 3D using intravital heart imaging and demonstrated homogeneous alignment in DCM mice. Whilst cardiomyocytes of control mice changed their alignment by every layer in 3D and position twistedly even in a single layer, termed myocyte twist, cardiomyocytes of DCM mice aligned homogeneously both in two-dimensional (2D) and in 3D and lost myocyte twist. Manipulation of cultured cardiomyocyte toward homogeneously aligned increased their contractility, suggesting that homogeneous alignment in DCM mice is due to a sort of alignment remodelling as a way to compensate cardiac dysfunction. Our findings provide the first intravital evidence of cardiomyocyte alignment and will bring new insights into understanding the mechanism of heart failure.


Author(s):  
Wenjing Ji ◽  
Guojie Zhao ◽  
Cong Guo ◽  
Li Fan ◽  
Hua Deng ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Mehrdad Shoeiby ◽  
Mohammad Ali Armin ◽  
Sadegh Aliakbarian ◽  
Saeed Anwar ◽  
Lars petersson

<div>Advances in the design of multi-spectral cameras have</div><div>led to great interests in a wide range of applications, from</div><div>astronomy to autonomous driving. However, such cameras</div><div>inherently suffer from a trade-off between the spatial and</div><div>spectral resolution. In this paper, we propose to address</div><div>this limitation by introducing a novel method to carry out</div><div>super-resolution on raw mosaic images, multi-spectral or</div><div>RGB Bayer, captured by modern real-time single-shot mo-</div><div>saic sensors. To this end, we design a deep super-resolution</div><div>architecture that benefits from a sequential feature pyramid</div><div>along the depth of the network. This, in fact, is achieved</div><div>by utilizing a convolutional LSTM (ConvLSTM) to learn the</div><div>inter-dependencies between features at different receptive</div><div>fields. Additionally, by investigating the effect of different</div><div>attention mechanisms in our framework, we show that a</div><div>ConvLSTM inspired module is able to provide superior at-</div><div>tention in our context. Our extensive experiments and anal-</div><div>yses evidence that our approach yields significant super-</div><div>resolution quality, outperforming current state-of-the-art</div><div>mosaic super-resolution methods on both Bayer and multi-</div><div>spectral images. Additionally, to the best of our knowledge,</div><div>our method is the first specialized method to super-resolve</div><div>mosaic images, whether it be multi-spectral or Bayer.</div><div><br></div>


2021 ◽  
Author(s):  
Xianglei Liu ◽  
Jingdan Liu ◽  
Cheng Jiang ◽  
Fiorenzo Vetrone ◽  
Jinyang Liang

2012 ◽  
Vol 51 (21) ◽  
pp. 5224 ◽  
Author(s):  
Tatsutoshi Shioda ◽  
Takashi Morisaki ◽  
Tuan Quoc Banh ◽  
Kohei Suzuki

Sign in / Sign up

Export Citation Format

Share Document