scholarly journals Thermal variation in gradient response: measurement and modeling

Author(s):  
Jennifer Nussbaum ◽  
Benjamin E. Dietrich ◽  
Bertram J. Wilm ◽  
Klaas P. Pruessmann
Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 155
Author(s):  
Yan Su ◽  
Ting Liu ◽  
Caiqiao Song ◽  
Aiqiao Fan ◽  
Nan Zhu ◽  
...  

As an essential electrolyte for the human body, the potassium ion (K+) plays many physiological roles in living cells, so the rapid and accurate determination of serum K+ is of great significance. In this work, we developed a solid-contact ion-selective electrode (SC-ISE) using MoS2/Fe3O4 composites as the ion-to-electron transducer to determine serum K+. The potential response measurement of MoS2/Fe3O4/K+-ISE shows a Nernst response by a slope of 55.2 ± 0.1 mV/decade and a low detection limit of 6.3 × 10−6 M. The proposed electrode exhibits outstanding resistance to the interference of O2, CO2, light, and water layer formation. Remarkably, it also presents a high performance in potential reproducibility and long-term stability.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2163
Author(s):  
Krzysztof Żaba ◽  
Tomasz Trzepieciński ◽  
Sandra Puchlerska ◽  
Piotr Noga ◽  
Maciej Balcerzak

The paper is devoted to highlighting the potential application of the quantitative imaging technique through results associated with work hardening, strain rate and heat generated during elastic and plastic deformation. The aim of the research presented in this article is to determine the relationship between deformation in the uniaxial tensile test of samples made of 1-mm-thick nickel-based superalloys and their change in temperature during deformation. The relationship between yield stress and the Taylor–Quinney coefficient and their change with the strain rate were determined. The research material was 1-mm-thick sheets of three grades of Inconel alloys: 625 HX and 718. The Aramis (GOM GmbH, a company of the ZEISS Group) measurement system and high-sensitivity infrared thermal imaging camera were used for the tests. The uniaxial tensile tests were carried out at three different strain rates. A clear tendency to increase the sample temperature with an increase in the strain rate was observed. This conclusion applies to all materials and directions of sample cutting investigated with respect to the sheet-rolling direction. An almost linear correlation was found between the percent strain and the value of the maximum surface temperature of the specimens. The method used is helpful in assessing the extent of homogeneity of the strain and the material effort during its deformation based on the measurement of the surface temperature.


Cancer ◽  
2006 ◽  
Vol 106 (8) ◽  
pp. 1722-1729 ◽  
Author(s):  
Guido B. van den Broek ◽  
Coen R. N. Rasch ◽  
Frank A. Pameijer ◽  
Ellen Peter ◽  
Michiel W. M. van den Brekel ◽  
...  

Polymer ◽  
1978 ◽  
Vol 19 (6) ◽  
pp. 699-704 ◽  
Author(s):  
Dominique Sarazin ◽  
Jeanne François

2014 ◽  
Vol 1017 ◽  
pp. 624-629 ◽  
Author(s):  
Masatoshi Shindou ◽  
Ryo Matsuda ◽  
Tatsuya Furuki ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Nowadays, infrared thermographic technology has been attracting attention in various industrial fields. We therefore focus on it as a novel method for monitoring tool temperature to improve end-milling conditions for difficult-to-cut materials. However, a problem has emerged; it is difficult to measure the tool temperature when there is a coolant because the coolant prevents monitoring of the surface of the end-mill tool. Thus, we developed a wireless tool holder system equipped with a thermocouple in the end mill to monitor the tool temperature under coolant conditions. In this report, we compared the temperature measured by infrared thermographic imagery with that measured by a wireless tool holder system when end milling the stainless steel under dry coolant conditions. The thermocouple, which has a small diameter of 0.12 mm, was used to ensure high response measurement in the proposed wireless tool holder. We obtained the tool temperatures by infrared thermographic imagery and by wireless tool holder equipped with a thermocouple at a sampling time of 1/30 of a second. We confirmed that the temperature measured by the wireless tool holder agrees with that measured by infrared thermographic imagery. As a result, we demonstrated that the developed method with a wireless system is effective to estimate the tool temperature in end-milling processes and makes it feasible to measure it under coolant conditions.


Sign in / Sign up

Export Citation Format

Share Document