scholarly journals 3D free‐breathing cardiac magnetic resonance fingerprinting

2020 ◽  
Vol 33 (10) ◽  
Author(s):  
Gastão Cruz ◽  
Olivier Jaubert ◽  
Haikun Qi ◽  
Aurélien Bustin ◽  
Giorgia Milotta ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Yang ◽  
Yan Zhang ◽  
Pinggui Lei ◽  
Lihui Wang ◽  
Yuehong Miao ◽  
...  

Objectives. The purpose of this study was to segment the left ventricle (LV) blood pool, LV myocardium, and right ventricle (RV) blood pool of end-diastole and end-systole frames in free-breathing cardiac magnetic resonance (CMR) imaging. Automatic and accurate segmentation of cardiac structures could reduce the postprocessing time of cardiac function analysis. Method. We proposed a novel deep learning network using a residual block for the segmentation of the heart and a random data augmentation strategy to reduce the training time and the problem of overfitting. Automated cardiac diagnosis challenge (ACDC) data were used for training, and the free-breathing CMR data were used for validation and testing. Results. The average Dice was 0.919 (LV), 0.806 (myocardium), and 0.818 (RV). The average IoU was 0.860 (LV), 0.699 (myocardium), and 0.761 (RV). Conclusions. The proposed method may aid in the segmentation of cardiac images and improves the postprocessing efficiency of cardiac function analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Fan Yang ◽  
Yan He ◽  
Mubashir Hussain ◽  
Hong Xie ◽  
Pinggui Lei

Free-breathing cardiac magnetic resonance (CMR) imaging has short examination time with high reproducibility. Detection of the end-diastole and the end-systole frames of the free-breathing cardiac magnetic resonance, supplemented by visual identification, is time consuming and laborious. We propose a novel method for automatic identification of both the end-diastole and the end-systole frames, in the free-breathing CMR imaging. The proposed technique utilizes the convolutional neural network to locate the left ventricle and to obtain the end-diastole and the end-systole frames from the respiratory motion signal. The proposed procedure works successfully on our free-breathing CMR data, and the results demonstrate a high degree of accuracy and stability. Convolutional neural network improves the postprocessing efficiency greatly and facilitates the clinical application of the free-breathing CMR imaging.


2011 ◽  
Vol 35 (3) ◽  
pp. 382-386 ◽  
Author(s):  
Khaled Z. Abd-Elmoniem ◽  
Chika C. Obele ◽  
Christopher T. Sibley ◽  
Jatin R. Matta ◽  
Roderic I. Pettigrew ◽  
...  

scholarly journals MODERATED EPOSTERS1385Longitudinal strain assessment in dilated cardiomyopathy patients using a novel accelerated DENSE sequence1407Simultaneous T1 and T2 cardiac quantification with CABIRIA: initial clinical experience1423Head-to-head comparison of acceleration algorithms in 4-dimensional flow CMR1502Left ventricular function and size evaluated by hybrid cardiac positron emission tomography-magnetic resonance: Intraindividual comparison of left ventricular ejection fraction and ventricular volumes derived by two modalities1510Left Atrium assessed by Cardiovascular Magnetic Resonance at 1.5 and 3 Tesla – age and gender effects1514Comparison of Free Breathing Cardiac MRI Radial technique to the Standard Multi breath-hold cine SSFP CMR technique for the assessment of LV Volumes and Function1536Self-navigated free-breathing isotropic 3D whole heart phase sensitive inversion recovery magnetic resonance without navigator for detection of myocardial infarction1547Assessment of Right Ventricular Strain Using Myocardial Deformation Recovery Semi Automated Technique: Initial Experience and Normal Values1586Tissue tracking myocardial deformation analysis and prediction of left ventricular remodeling in acute myocardial infarction1589Investigating strategies for optimal 31P MRS clinical cardiac at 3T: Initial Results1620Quantitative Criteria for the Diagnosis of the Congenital Absence of Pericardium by Cardiac Magnetic Resonance1632Widespread tissue injury during acute myocardial infarction: evidence from advanced CMR relaxometry1322Computed tomography coronary angiography verSus sTRess cArdiac magneTic rEsonance for the manaGement of sYmptomatic revascularized patients: a cost effectiveness study (STRATEGY study)1339Comparison of low- versus high-dose of gadobutrol for late gadolinium enhancement imaging at 1.5 Tesla: a clinical feasibility study1347Multi-parametric Cardiac Magnetic Resonance for Prediction of Cardiac Complications in Thalassemia Intermedia: a Prospective Multicenter Study1461Prognostic value of Cardiovascular Magnetic Resonance derived indexes of myocardial fibrosis in heart transplant recipients1523The role of CMR in the acute phase of hospitalization: changing paradigms1542Preoperative CMR-based score predict ventricular response after surgical left ventricular reconstruction in ischemic heart failure patients1555Excellent response rate to cardiac resynchronization therapy guided with magnetic resonance imaging1626The ECG as a predictor of arrhythmogenic substrate on Cardiac Magnetic Resonance Imaging in patients undergoing ablation for premature ventricular contractions1649Comparison of T1-mapping at 3.0T CMR and angiographic APPROACH score for area at risk assessment in ST-segment elevation myocardial infarction1340Pathological correlates of left bundle branch disease in patients with non-ischemic cardiomyopathy: a cardiovascular magnetic resonance study1342Myocardial remodelling and fibrosis in nonischaemic dilated cardiomyopathy: insights from cardiovascular magnetic resonance1411The association between fibrosis and contractile dysfunction in hypertrophic cardiomyopathy assessed by cardiovascular magnetic resonance1622Persistent myocardial inflammation due to intramyocardial haemorrhage in reperfused STEMI as a precursor to adverse LV remodelling - insights from multi-parametric mapping1566Semiquantitative analysis of low and high b value DWI for detecting myocardial edema in acute myocarditis1567Value of Cardiac MRI In Detecting Coronary Artery Disease In Newly Diagnosed Systolic Dysfunction1570Usefulness of cardiac magnetic resonance in tuberous sclerosis complex1578Papillary muscles offer further insight into hypertrophied hearts: a cardiovascular magnetic resonance study1627Diagnostic and clinical implications of CMR timing (early versus late) in patients with troponin positive acute coronary syndromes and unobstructed coronary arteries: Table 1.

2016 ◽  
Vol 17 (suppl 1) ◽  
pp. i24-i36 ◽  
Author(s):  
Upasana Tayal ◽  
Alexandros Kallifatidis ◽  
P. Garg ◽  
D. Beitzke ◽  
Stephanie Funk ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Keyan Wang ◽  
Wenbo Zhang ◽  
Shuman Li ◽  
Xiaoming Bi ◽  
Michaela Schmidt ◽  
...  

Abstract Background and purpose Conventional cardiac magnetic resonance (CCMR) imaging is usually performed with breath-holding (BH), which is adverse in patients with BH limitations. We explored the ability of a free-breathing CMR (fCMR) protocol to prognosticate in patients with coronary heart diseases (CHD) and limited BH ability. Methods Sixty-seven patients with CHD and limited BH abilities were prospectively enrolled in this study. All patients underwent comprehensive fCMR imaging at 3.0 T. The fCMR protocols included compressed sensing (CS) single-shot cine acceleration imaging, and motion-corrected (MOCO), single-shot late gadolinium enhancement (LGE) imaging. Image quality (IQ) of the cine and LGE images was evaluated based on the 5-point Likert scale. The value of fMRI in providing a prognosis in patients with CHD was assessed. Statistical methods included the T test, Mann–Whitney test, Kappa test, Kaplan–Meier curve, Log-rank test, Cox proportional hazard regression analysis, and receiver operating characteristic curves. Results All IQ scores of the short axis CS-cine and both the short and long axes MOCO LGE images were ≥ 3 points. Over a median follow-up of 31 months (range 3.8–38.2), 25 major adverse cardiovascular events (MACE) occurred. In the univariate analysis, infarction size (IS), left ventricular ejection fraction (LVEF), 3D-Global peak longitudinal strain (3D-GPLS), heart failure classification were significantly associated with MACE. When the significantly univariate MACE predictors, added to the multivariate analysis, which showed IS (HR 1.02; 95% CI 1.00–1.05; p = 0.048) and heart failure with preserved EF (HR 0.20; 95% CI 0.04–0.98; p = 0.048) correlated positively with MACE. The optimal cutoff value for LVEF, 3D-GPLS, and IS in predicting MACE was 34.2%, − 5.7%, and 26.1% respectively, with a sensitivity of 90.5%, 64%, and 96.0% and specificity of 72%, 95.2%, and 85.7% respectively. Conclusions The fCMR protocol can be used to make prognostic assessments in patients with CHD and BH limitations by calculating IS and LVEF.


Sign in / Sign up

Export Citation Format

Share Document