Locking-free finite elements for shear deformable orthotropic thin-walled beams

2007 ◽  
Vol 72 (7) ◽  
pp. 808-834 ◽  
Author(s):  
F. Minghini ◽  
N. Tullini ◽  
F. Laudiero
2020 ◽  
Author(s):  
E. Carrera ◽  
◽  
A. Pagani ◽  
R. Augello

AbstractIn the framework of finite elements (FEs) applications, this paper proposes the use of the node-dependent kinematics (NDK) concept to the large deflection and post-buckling analysis of thin-walled metallic one-dimensional (1D) structures. Thin-walled structures could easily exhibit local phenomena which would require refinement of the kinematics in parts of them. This fact is particularly true whenever these thin structures undergo large deflection and post-buckling. FEs with kinematics uniform in each node could prove inappropriate or computationally expensive to solve these locally dependent deformations. The concept of NDK allows kinematics to be independent in each element node; therefore, the theory of structures changes continuously over the structural domain. NDK has been successfully applied to solve linear problems by the authors in previous works. It is herein extended to analyze in a computationally efficient manner nonlinear problems of beam-like structures. The unified 1D FE model in the framework of the Carrera Unified Formulation (CUF) is referred to. CUF allows introducing, at the node level, any theory/kinematics for the evaluation of the cross-sectional deformations of the thin-walled beam. A total Lagrangian formulation along with full Green–Lagrange strains and 2nd Piola Kirchhoff stresses are used. The resulting geometrical nonlinear equations are solved with the Newton–Raphson linearization and the arc-length type constraint. Thin-walled metallic structures are analyzed, with symmetric and asymmetric C-sections, subjected to transverse and compression loadings. Results show how FE models with NDK behave as well as their convenience with respect to the classical FE analysis with the same kinematics for the whole nodes. In particular, zones which undergo remarkable deformations demand high-order theories of structures, whereas a lower-order theory can be employed if no local phenomena occur: this is easily accomplished by NDK analysis. Remarkable advantages are shown in the analysis of thin-walled structures with transverse stiffeners.


2014 ◽  
Vol 93 (1-2) ◽  
pp. 3-16 ◽  
Author(s):  
E. Carrera ◽  
M. Cinefra ◽  
M. Petrolo ◽  
E. Zappino

2006 ◽  
Vol 195 (41-43) ◽  
pp. 5377-5389 ◽  
Author(s):  
Alexander Muthler ◽  
Alexander Düster ◽  
Wolfram Volk ◽  
Marcus Wagner ◽  
Ernst Rank

Author(s):  
Karin Nachbagauer ◽  
Johannes Gerstmayr

For the modeling of large deformations in multibody dynamics problems, the absolute nodal coordinate formulation (ANCF) is advantageous since in general, the ANCF leads to a constant mass matrix. The proposed ANCF beam finite elements in this approach use the transverse slope vectors for the parameterization of the orientation of the cross section and do not employ an axial nodal slope vector. The geometric description, the degrees of freedom, and a continuum-mechanics-based and a structural-mechanics-based formulation for the elastic forces of the beam finite elements, as well as their usage in several static problems, have been presented in a previous work. A comparison to results provided in the literature to analytical solution and to the solution found by commercial finite element software shows accuracy and high order convergence in statics. The main subject of the present paper is to show the usability of the beam finite elements in dynamic and buckling applications.


1984 ◽  
Vol 16 (4) ◽  
pp. 577-584
Author(s):  
V. G. Krivonogov ◽  
V. A. Petushkov ◽  
V. S. Strelyaev

2014 ◽  
Vol 553 ◽  
pp. 600-605
Author(s):  
Gerard Taig ◽  
Gianluca Ranzi

A Generalised Beam Theory (GBT) formulation is presented to analyse the structural behaviour of shear deformable thin-walled members with partially stiffened cross-sections located at arbitrary locations along their length. The deformation modes used in the formulation are taken as the dynamic eigenmodes of a planar frame representing the unstiffened cross-section. Constraint equations are derived and implemented in the GBT member analysis to model the influence of rigid stiffeners on the member response. The accuracy of the approach is validated against a shell finite element model developed in Abaqus. A numerical example describing the linear elastic behaviour of partially stiffened thin-walled member is provided to outline the usability and flexibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document