scholarly journals Adrenomedullin Attenuates Inflammation in White Adipose Tissue of Obese Rats Through Receptor‐Mediated PKA Pathway

Obesity ◽  
2020 ◽  
Vol 29 (1) ◽  
pp. 86-97
Author(s):  
Hang‐Bing Dai ◽  
Fang‐Zheng Wang ◽  
Ying Kang ◽  
Jing Sun ◽  
Hong Zhou ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Chorng-Kai Wen ◽  
Tzung-Yan Lee

Suppression of white adipose tissue inflammatory signaling may contribute to the pathogenesis of obesity-induced inflammatory response. However, the precise mechanism of efficacy of acupuncture related to adipose tissue remains poorly understood. In the present study we evaluated the anti-inflammatory activities of 10 Hz electroacupuncture (EA) which was applied at the acupoint Zusanli (ST36) for 20 min per day in high-fat diet- (HFD-) induced obesity model. Treatment lasted for one week. Obese rats treated with EA showed significantly reduced body weight compared with the rats in HFD group. EA decreased the number of F4/80 and CD11b-positive macrophages in epididymal adipose tissue. We found that 10 Hz EA given 7 days/week at ST36 acupoints significantly alleviated macrophage recruitment and then improved the obesity-associated factors of sterol regulatory element-binding protein-1 (SREBP-1) and target genes expression in rats with HFD. Adipose tissue inflammatory responses indicated by tumor necrosis factor-α(TNF-α), IL-6, monocyte chemotactic protein-1 (MCP-1), and CD68 mRNA expression were significantly reduced by EA in obese rats. Additionally, EA was found to significantly reduced serum levels of TNF-α, IL-6, and IL-1 in this model. These results indicated that EA improved adipose tissue inflammatory response in obese rats, at least partly, via attenuation of lipogenesis signaling.


2019 ◽  
Vol 62 ◽  
pp. 103519 ◽  
Author(s):  
Luis Jorge Coronado-Cáceres ◽  
Griselda Rabadán-Chávez ◽  
Lucía Quevedo-Corona ◽  
Blanca Hernández-Ledesma ◽  
Angel Miliar Garcia ◽  
...  

1991 ◽  
Vol 279 (1) ◽  
pp. 303-308 ◽  
Author(s):  
L Pénicaud ◽  
P Ferré ◽  
F Assimacopoulos-Jeannet ◽  
D Perdereau ◽  
A Leturque ◽  
...  

Previous experiments have shown that insulin-induced glucose utilization is increased in white adipose tissue of young obese Zucker rats. We have investigated the possible role of over-expression of the muscle/fat glucose transporter (Glut 4) and key lipogenic enzymes in this increased insulin-responsiveness. The amount or activity and the mRNA concentrations of Glut 4, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were measured before and after weaning in white adipose tissue of obese and lean Zucker rats. Comparison of the levels of Glut 4 and lipogenic-enzyme expression in 15-day-old suckling and 30-day-old weaned rats on a high-carbohydrate diet shows a marked increase in the latter group. The increase was, in lean and obese rats respectively, 6- and 7-fold for the amount of Glut 4 and 2- and 3-fold for its mRNA concentrations, 40- and 100-fold for the activity of lipogenic enzymes (FAS and ACC) and 30- and 10-fold for their mRNA concentrations. Furthermore, all these parameters, except the amount of Glut 4, were 2-5-fold higher in obese rats, both before and after weaning. Changes at weaning were largely blunted when rats were weaned on to a high-fat diet, although the differences between lean and obese rats persisted, and even became significant for the amount of Glut 4. Whatever the experimental conditions, plasma insulin levels were significantly higher in obese than in lean rats. These results indicate the existence of an enhanced expression of Glut 4, FAS and ACC in white adipose tissue of young obese fa/fa rats which could be related to the increased plasma insulin levels.


2018 ◽  
Vol 48 ◽  
pp. 167-172
Author(s):  
Miguel Navarro-Alarcon ◽  
Marina Villalón ◽  
Cecilia Jiménez ◽  
Javier Quesada-Granados ◽  
Ahmad Agil

1988 ◽  
Vol 254 (3) ◽  
pp. E342-E348 ◽  
Author(s):  
S. Krief ◽  
R. Bazin ◽  
F. Dupuy ◽  
M. Lavau

In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by [3-3H]glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia (140 vs. 55 microU/ml). In obese compared with lean rats, tissue glucose uptake (assessed by the 2-deoxyglucose technique) was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart, in proximal intestine, and in total muscular mass of limbs. Our data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake.


2019 ◽  
Vol 10 ◽  
Author(s):  
Bruna K. S. Hirata ◽  
Maysa M. Cruz ◽  
Roberta D. C. C. de Sá ◽  
Talita S. M. Farias ◽  
Meira M. F. Machado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document