scholarly journals Electroacupuncture Decreases the Leukocyte Infiltration to White Adipose Tissue and Attenuates Inflammatory Response in High Fat Diet-Induced Obesity Rats

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Chorng-Kai Wen ◽  
Tzung-Yan Lee

Suppression of white adipose tissue inflammatory signaling may contribute to the pathogenesis of obesity-induced inflammatory response. However, the precise mechanism of efficacy of acupuncture related to adipose tissue remains poorly understood. In the present study we evaluated the anti-inflammatory activities of 10 Hz electroacupuncture (EA) which was applied at the acupoint Zusanli (ST36) for 20 min per day in high-fat diet- (HFD-) induced obesity model. Treatment lasted for one week. Obese rats treated with EA showed significantly reduced body weight compared with the rats in HFD group. EA decreased the number of F4/80 and CD11b-positive macrophages in epididymal adipose tissue. We found that 10 Hz EA given 7 days/week at ST36 acupoints significantly alleviated macrophage recruitment and then improved the obesity-associated factors of sterol regulatory element-binding protein-1 (SREBP-1) and target genes expression in rats with HFD. Adipose tissue inflammatory responses indicated by tumor necrosis factor-α(TNF-α), IL-6, monocyte chemotactic protein-1 (MCP-1), and CD68 mRNA expression were significantly reduced by EA in obese rats. Additionally, EA was found to significantly reduced serum levels of TNF-α, IL-6, and IL-1 in this model. These results indicated that EA improved adipose tissue inflammatory response in obese rats, at least partly, via attenuation of lipogenesis signaling.

2019 ◽  
Vol 62 ◽  
pp. 103519 ◽  
Author(s):  
Luis Jorge Coronado-Cáceres ◽  
Griselda Rabadán-Chávez ◽  
Lucía Quevedo-Corona ◽  
Blanca Hernández-Ledesma ◽  
Angel Miliar Garcia ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yeji Choi ◽  
Yasuko Yanagawa ◽  
Sungun Kim ◽  
Wan Kyunn Whang ◽  
Taesun Park

The objective of the present study was to determine whetherArtemisia iwayomogi(AI) extract reduces visceral fat accumulation and obesity-related biomarkers in mice fed a high-fat diet (HFD), and if so, whether these effects are exerted by modulation of the expression of genes associated with adipogenesis and inflammation. AI extract supplementation for 11 weeks significantly prevented HFD-induced increments in body weight, visceral adiposity, adipocyte hypertrophy, and plasma levels of lipids and leptin. Additionally, AI extract supplementation resulted in downregulation of adipogenic transcription factors (PPARγ2 and C/EBPα) and their target genes (CD36, aP2, and FAS) in epididymal adipose tissue compared to the HFD alone. The AI extract effectively reversed the HFD-induced elevations in plasma glucose and insulin levels and the homeostasis model assessment of insulin resistance index. Furthermore, the extract significantly decreased gene expression of proinflammatory cytokines (TNFα, MCP1, IL-6, IFNα, and INFβ) in epididymal adipose tissue and reduced plasma levels of TNFαand MCP1 as compared to HFD alone. In conclusion, these results suggest that AI extract may prevent HFD-induced obesity and metabolic disorders, probably by downregulating the expression of genes related to adipogenesis and inflammation in visceral adipose tissue.


2017 ◽  
Author(s):  
Dan Liu ◽  
Xia Wang ◽  
Xinying Lin ◽  
Baihui Zhang ◽  
Shue Wang ◽  
...  

AbstractUnderstanding is emerging about microRNAs as mediators in the regulation of white adipose tissue (WAT) and obesity. The expression level of miR-199a in mice was investigated to test our hypothesis: miR-199a might be related to fat accumulation and try to find its target mRNA, which perhaps could propose strategies with a therapeutic potential affecting the fat storage. C57/BL6J mice were randomly assigned to either a control group or an obesity model group (n=10 in both groups). Control mice were fed a normal diet (fat: 10 kcal %) ad libitum for 12 weeks, and model mice were fed a high-fat diet (fat: 30 kcal %) ad libitum for 12 weeks to induce obesity. At the end of the experiment, body fat mass and the free fatty acids (FFAs) and triglycerides (TGs) in WAT were tested. Fat cell size was measured by hematoxylin-eosin (H&E) staining method. The fat mass of the model group was higher than that of the control group (P<0.05). In addition, the concentrations of the FFAs and TGs were higher (P<0.05) and the adipocyte count was lower (P<0.05) in the model group. We tested the expression levels of miR-199a and key adipogenic transcription factors, including peroxisome proliferator activated receptor gamma2 (PPARγ2), CCAAT/enhancer binding proteins alpha (C/EBPα), adipocyte fatty acid-binding protein (aP2), and sterol regulatory element binding protein-1c (SREBP-1c). Up-regulated expression of miR-199a was observed in model group. Increased levels of miR-199a was accompanied by high expression levels of SREBP-1c. We found that the 3’-UTR of SREBP-1c mRNA has a predicted binding site for miR-199a. Based on the current discoveries, we suggest that miR-199a may exert its action by binding to its target mRNA and cooperate with SREBP-1c to induce obesity. Therefore, if the predicted binding site is confirmed by further research, miR-199a may have therapeutic potential for obesity.AbbreviationsWAT, white adipose tissue; PPARγ2, peroxisome proliferator, activated receptor γ2; C/EBP αCCAAT/enhancer binding proteins α; aP2, adipocyte fatty acid-binding protein; SREBP-1c, sterol regulatory element binding protein-1c; HFD, high-fat diet.


2018 ◽  
Vol 14 (4) ◽  
pp. 271-277 ◽  
Author(s):  
M. Ebrahimi ◽  
R. Fathi ◽  
Z. Ansari Pirsaraei ◽  
E. Talebi-Garakani ◽  
M. Najafi

Lipid metabolism, especially in the white adipose tissue as an active metabolic organ, is tightly regulated by the key transcription factors, such as the sterol regulatory element binding protein 1c (SREBP-1c) and the Farnesoid X Receptor (FXR). We have studied the expression of these genes in the white adipose tissue to see how a high fat diet (HFD) and two intensities of aerobic training change the lipogenic and lipolytic pathways. 44 male Wistar rats randomly divided into the normal (12% calories from fat) and HFD (56% calories from fat) groups. Each group included control (n=6), moderate trained (n=8, ~65% Vo2max) and high intensity trained (n=8, ~75% Vo2max) rats. After 8 weeks of training, the weight changes, plasma insulin and lipid profile levels and the relative gene expression of SREBP-1c and FXR in the adipose tissue was measured. Data were analysed by 2-way ANOVA (P<0.05). HFD fed rats showed higher levels of insulin and dyslipidemia that was correlated with the higher weight gain. Also, the adipose expression of SREBP-1c was higher in the HFD fed rats that it was strongly correlated with the lower FXR expression. Trained rats independent of the intensity of the training showed lower SREBP-1c and higher FXR expression, but no change was observed in the lipid profile levels. HFD-induced dyslipidemia could occur via SREBP-1c activation in the adipose tissue while the aerobic training activates FXR and inhibits the lipogenic pathways. Despite the activation of lipolytic pathways in the trained rats, it seems that diet has more effect on the lipid profile than the aerobic training.


2021 ◽  
pp. 153537022110060
Author(s):  
Yue Chen ◽  
Jie Ding ◽  
Yufei Zhao ◽  
Shenghong Ju ◽  
Hui Mao ◽  
...  

This study aimed to track and evaluate the effect of low-dose irisin on the browning of white adipose tissue (WAT) in mice using magnetic resonance imaging (MRI) noninvasively in vivo. Mature white adipocytes extracted from mice were cultured, induced and characterized before being treated by irisin. The volume and fat fraction of WAT were quantified using MRI in normal chow diet and high fat mice after injection of irisin. The browning of cultured white adipocytes and WAT in mice were validated by immunohistochemistry and western blotting for uncoupling protein 1 (UCP1) and deiodinase type II (DIO2). The serum indexes were examined with high fat diet after irisin intervention. UCP1 and DIO2 in adipocytes showed increases responding to the irisin treatment. The size of white adipocytes in mice receiving irisin intervention was reduced. MRI measured volumes and fat fraction of WAT were significantly lower after Irisin treatment. Blood glucose and cholesterol levels were reduced in high fat diet mice after irisin treatment. Irisin intervention exerted browning of WAT, resulting reduction of volume and fat fraction of WAT as measured by MRI. Furthermore, it improved the condition of mice with diet-induced obesity and related metabolic disorders.


Author(s):  
Sihoon Park ◽  
Jae-Joon Lee ◽  
Hye-Won Shin ◽  
Sunyoon Jung ◽  
Jung-Heun Ha

Soybean koji refers to steamed soybeans inoculated with microbial species. Soybean fermentation improves the health benefits of soybeans. Obesity is a serious health concern owing to its increasing incidence rate and high association with other metabolic diseases. Therefore, we investigated the effects of soybean and soybean koji on high-fat diet-induced obesity in rats. Five-week-old male Sprague-Dawley rats were randomly divided into four groups (n = 8/group) as follows: (1) regular diet (RD), (2) high-fat diet (HFD), (3) HFD + steamed soybean (HFD+SS), and (4) HFD + soybean koji (HFD+SK). SK contained more free amino acids and unsaturated fatty acids than SS. In a rat model of obesity, SK consumption significantly alleviated the increase in weight of white adipose tissue and mRNA expression of lipogenic genes, whereas SS consumption did not. Both SS and SK reduced serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels, and increased high-density lipoprotein cholesterol levels. SS and SK also inhibited lipid accumulation in the liver and white adipose tissue and reduced adipocyte size. Although both SS and SK could alleviate HFD-induced dyslipidemia, SK has better anti-obesity effects than SS by regulating lipogenesis. Overall, SK is an excellent functional food that may prevent obesity.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Shen ◽  
Su Jin Song ◽  
Narae Keum ◽  
Taesun Park

The present study aimed to investigate whether olive leaf extract (OLE) prevents high-fat diet (HFD)-induced obesity in mice and to explore the underlying mechanisms. Mice were randomly divided into groups that received a chow diet (CD), HFD, or 0.15% OLE-supplemented diet (OLD) for 8 weeks. OLD-fed mice showed significantly reduced body weight gain, visceral fat-pad weights, and plasma lipid levels as compared with HFD-fed mice. OLE significantly reversed the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPARγ, C/EBPα, CD36, FAS, and leptin) in the epididymal adipose tissue of HFD-fed mice. Furthermore, the HFD-induced downregulation of thermogenic genes involved in uncoupled respiration (SIRT1, PGC1α, and UCP1) and mitochondrial biogenesis (TFAM, NRF-1, and COX2) was also significantly reversed by OLE. These results suggest that OLE exerts beneficial effects against obesity by regulating the expression of genes involved in adipogenesis and thermogenesis in the visceral adipose tissue of HFD-fed mice.


2013 ◽  
Vol 6 (2) ◽  
pp. 107-122 ◽  
Author(s):  
Frédéric Capel ◽  
Gaëlle Rolland-Valognes ◽  
Catherine Dacquet ◽  
Manuel Brun ◽  
Michel Lonchampt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document