Preparation of modified multi‐walled carbon nanotubes as a reinforcement for epoxy shape‐memory polymer composites

2020 ◽  
Vol 32 (1) ◽  
pp. 67-75
Author(s):  
Yanling Wang ◽  
Longhao Tang ◽  
Yongfei Li ◽  
Qiang Li ◽  
Baojun Bai
2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Chuang Zhang ◽  
Long Li ◽  
Yuanhang Xin ◽  
Jiaqi You ◽  
Jing Zhang ◽  
...  

In this study, which was inspired by mussel-biomimetic bonding research, carbon nanotubes (CNTs) were interfacially modified with polydopamine (PDA) to prepare a novel nano-filler (CNTs@PDA). The structure and properties of the CNTs@PDA were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The CNTs and the CNTs@PDA were used as nanofillers and melt-blended into trans-1,4 polyisoprene (TPI) to create shape-memory polymer composites. The thermal stability, mechanical properties, and shape-memory properties of the TPI/CNTs and TPI/CNTs@PDA composites were systematically studied. The results demonstrate that these modifications enhanced the interfacial interaction, thermal stability, and mechanical properties of TPI/CNTs@PDA composites while maintaining shape-memory performance.


Sign in / Sign up

Export Citation Format

Share Document