Frequency of Paroxysmal Nocturnal Hemoglobinuria Clones by Multiparametric Flow Cytometry in Pediatric Aplastic Anemia Patients of Indian Ethnic Origin

2015 ◽  
Vol 63 (1) ◽  
pp. 93-97 ◽  
Author(s):  
Sreejesh Sreedharanunni ◽  
Man Updesh Singh Sachdeva ◽  
Parveen Bose ◽  
Neelam Varma ◽  
Deepak Bansal ◽  
...  
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2398-2398
Author(s):  
Choladda V. Curry ◽  
M. Tarek Elghetany ◽  
Andrea M. Sheehan ◽  
Alison A. Bertuch ◽  
Ghadir S. Sasa

Abstract Abstract 2398 Background: Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired hematopoietic stem cell disorder characterized by expansion of cells with complete or partial loss of glycosyl phosphatidyl-inositol-anchored proteins. PNH usually presents with one or more of three clinical manifestations: intravascular hemolysis, thrombosis, or acquired bone marrow failure [aplastic anemia (AA) or myelodysplastic syndrome (MDS)]. Flow cytometry has become the gold standard for the diagnosis of PNH, particularly with the recent publication of guidelines for the diagnosis and monitoring of PNH and related disorders in 2010. PNH occurs rarely in children, and, consequently, the published literature regarding PNH in this pediatric population consists only of small case series, making it difficult to extrapolate the frequency of which PNH clones are identified. Moreover, no studies are available on the incidence of PNH clones in children with MDS and acquired aplastic anemia (AAA). We, therefore, sought to determine how frequently a high sensitivity FLAER-based assay, with a sensitivity of 0.01%, would detect PNH clones in children with cytopenias. Method and Results: The study period was from December 2010 to July 2011. PNH testing was performed using a high sensitivity FLAER based assay according to published guidelines using the combination of FLAER/CD64/CD15/CD33/CD24/CD14/CD45 for WBC testing and CD235a/CD59 for RBC testing. There were 31 peripheral blood samples from 29 patients (17 males/12 females) ranging in age from 4 months to 17 years (median, 10 years). All patients were tested for PNH because of cytopenia [pancytopenia (n = 14) and uni- or bicytopenia (n = 15)]. Patients had a mean Hgb of 10.7 gm/dL, mean ANC of 2.66 X103/uL and mean platelet of 115 X103/uL. Review of medical charts revealed the following clinical diagnoses: classic PNH - episodic hemolytic anemia with persistent thrombocytopenia (1), severe AA (SAA, 8), SAA with myelofibrosis (1), MDS (1), Fanconi anemia (1), chronic thrombocytopenia (2), refractory iron deficiency anemia (1), bone marrow suppression likely due to virus/medication (1), parvovirus infection (1), Copper deficiency (1), systemic lupus erythematosus (SLE, 1), and cytopenia of unknown etiology (10). Of note, all patients with AAA had SAA. PNH clones were identified in 6 out of 29 patients (20%): minor clones (<1% PNH population) in 3 patients: average clone sizes 0.12% [range 0.02–0.25] granulocytes (G), 0.51% [0.20–0.99] monocytes (M), and 0.08% [0.04–0.14] red blood cells (RBCs), and major clones (>1% PNH population) in 3 patients: average clone sizes 31.11% [3.98–67.58] G, 31.98% [6.15–71.1] M, and 14.76% [1.19–38.03] RBC, respectively, with ages ranging from 4 to 17 years. Patients who were identified to have minor PNH clones all presented with pancytopenia. Two were diagnosed with SAA; the cause of pancytopenia in the third patient is currently under investigation. None of patients with minor PNH clones had evidence of hemolysis or thrombosis. The three patients with major PNH clones had the following: Classic PNH with hemolytic anemia (1), SAA with PNH clones detected at the time of SAA diagnosis (1), and SAA with PNH clones detected 20 months after immunosuppressive therapy (1). The latter two patients did not have evidence of hemolysis or thrombosis. Of the 10 patients with a diagnosis of SAA or MDS, PNH clones were identified in 4 (40%) patients (2 with minor clones, 2 with major clones). Conclusions: This is the first study to describe the utility of using a standardized high-sensitivity FLAER-based flow cytometry assay to identify PNH clones in children. This is also the first study describing the prevalence of PNH clones in children with MDS and AAA. The identification of a PNH population in 40% of the MDS and AAA cases emphasizes the need for PNH testing in all children with these disorders using a high-sensitivity FLAER based flow cytometry assay. A low sensitivity assay would have missed 2 patients with minor PNH clones. This finding may be of significance considering SAA or MDS patients with PNH clones are more likely to respond to immunosuppressive therapy. Further studies are needed to investigate the prevalence of PNH clones in this setting and its impact on disease manifestations, course, and outcomes in children. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S88-S88
Author(s):  
Phuong-Lan Nguyen

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is a rare life-threatening condition due to an acquired somatic mutation of the PIGA gene, leading to nonmalignant clonal expansion of hematopoietic stem cells, which are deficient in glycosyl phosphatidylinositol-anchored proteins (GPI-APs). Fluorescein-labeled proaerolysin (FLAER) and flow cytometry are key tools in the diagnosis of PNH. While clonal detection of PNH in both tests has a sensitive diagnostic threshold of 0.01% in erythrocytes and 0.05% to 1% in leukocytes, one must be cautious in ruling out the possibilities of myelodysplastic syndrome (MDS) or aplastic anemia. We propose guidelines in the differential diagnosis and evaluation of PNH from these and other hematologic disorders that can arise from GPI-AP deficient cells. These guidelines are based on a meta-analysis of five research literature sources, including four case studies. We also compare and contrast our limits of quantification of the in-house PNH assay at University of Kentucky Healthcare with those of an interlaboratory validation of 11 institutions within the United Kingdom. Our report advocates for thorough evaluation of multiple laboratory and clinical variables affecting sensitivity and accuracy of flow cytometry and FLAER in PNH. Furthermore, we recommend lowering of the in-house limit of quantification from the current 1% to 0.01%. This allows for the critical consideration of conditions such as MDS and aplastic anemia and their disease courses, all of which can present with PNH clones as low as 0.01% on flow cytometry and FLAER.


2014 ◽  
Vol 94 (5) ◽  
pp. 721-728 ◽  
Author(s):  
Man Updesh Singh Sachdeva ◽  
Neelam Varma ◽  
Dinesh Chandra ◽  
Parveen Bose ◽  
Pankaj Malhotra ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (1) ◽  
pp. 178-183 ◽  
Author(s):  
Antonio M. Risitano ◽  
Hoon Kook ◽  
Weihua Zeng ◽  
Guibin Chen ◽  
Neal S. Young ◽  
...  

Abstract We have hypothesized that in aplastic anemia (AA) the presence of antigen-specific T cells is reflected by their contribution to the expansion of a particular variable beta chain (Vβ) subfamily and also by clonal CDR3 skewing. To determine the role of disease-specific “signature” T-cell clones in AA, we studied preferential Vβ usage by flow cytometry and analyzed Vβ-CDR3 regions for the presence of oligoclonality. We first established the contribution of each Vβ family to the total CD4+ and CD8+ lymphocyte pool; in AA and paroxysmal nocturnal hemoglobinuria, a seemingly random overrepresentation of different Vβ families was observed. On average, we found expansion in 3 (of 22 examined) Vβ families per patient. When the contribution of individual Vβ families to the effector pool was examined, more striking Vβ skewing was found. Vβ-CDR3 size distribution was analyzed for the expanded Vβ families in isolated CD4+ and CD8+ populations; underrepresented Vβ families displayed more pronounced CDR3 skewing. Expanded CD4+Vβ subfamilies showed mostly a polyclonal CDR3 size distribution with only 38% of skewing in expanded Vβ families. In contrast, within overrepresented CD8+Vβ types, marked CDR3 skewing (82%) was seen, consistent with nonrandom expansion of specific CD8+ T-cell clones. No preferential expansion of particular Vβ families was observed, in relation to HLA-type. In patients examined after immunosuppressive therapy, an abnormal Vβ-distribution pattern was retained, but the degree of expansion of individual Vβ was lower. As Vβ skewing may correlate with relative Vβ size, oligoclonality in combination with numerical Vβ expansion can be applied to recognition of disease-specific T-cell receptors.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
Benjamin Chin-Yee ◽  
Indermohan S. Sandhu ◽  
Ivan Pacheco ◽  
Selay Lam

Background: Acquired amegakaryocytic thrombocytopenic purpura (AATP) is a rare bone marrow disorder characterized by a marked reduction in megakaryocytes with otherwise normal hematopoiesis. Both humoral and cell-mediated suppression of megakaryocytopoeisis have been postulated as mechanisms causing AATP. Herein we report a case of a 67-year-old man diagnosed with AATP with a co-existent paroxysmal nocturnal hemoglobinuria (PNH) clone and review the literature on AATP, focusing on proposed etiologies for this rare condition. Case: A 67-year-old man presented to clinic with a 1-week history easy bruising, petechiae and a platelet count of 6 x 109/L. He had a history of left elbow bursitis caused by S. pyogenes, treated with antibiotics 6-months prior to his presentation. His CBC was normal at that time. On assessment, HIV, HBV, HCV, and H. pylori serologies were negative; CMV and EBV serologies were positive for IgG and negative for IgM. ANA and RF were negative, and vitamin B12 level was normal. There was no hepatosplenomegaly on ultrasound. Bone marrow aspirate and biopsy demonstrated a normocellular marrow with severe megakaryocytic hypoplasia. Cytogenetics demonstrated normal male karyotype with loss of Y chromosome in 9/20 metaphases. Flow cytometry revealed a population of 3.99% GPI-deficient neutrophils by FLAER assay. Molecular testing for myeloid mutations and T-cell gene rearrangement is pending. The patient was initially treated with corticosteroids and IVIG, and showed no response with persistent isolated thrombocytopenia. He was managed with platelet transfusions which resulted in a normal platelet increment of 35 x 109/L 1-hour post-transfusion. A diagnosis of AATP was established and he was admitted for immunosuppressive therapy (IST) with ATG and cyclosporine. Methods: We conducted a narrative review of the literature on AATP, searching MEDLINE and EMBASE for articles on AATP published in English between 1946 and 2020. Reference lists of selected articles were reviewed to identify additional cases. We extracted data on presentation, bone marrow findings (including cytogenetics, molecular genetics, and flow cytometry), treatment regimens and outcomes. Results: We identified 47 cases of adult patients with thrombocytopenia attributed to AATP reported in the literature (Table 1). Three main mechanisms were proposed: (i) cell-mediated autoimmunity, (ii) humoral autoimmunity, and (iii) intrinsic stem cell defect. All three mechanisms were supported by in vitro studies, which demonstrated suppression of colony forming unit-megakaryocytes (CFU-M) by patients' T-lymphocytes (Gerwitz et al. 1986; Colovic et al. 2004) and serum (Hoffman et al. 1982) found to contain IgG antibodies inhibiting CFU-M formation, as well as intrinsic defects in CFU-M progenitor proliferation. Few studies reported cytogenetic abnormalities and only one documented molecular genetic testing. Response to IST was reported in several cases, most commonly ATG and cyclosporine. Four recent cases demonstrated remission following treatment with TPO agonists eltrombopag and romiplostim. Six cases progressed to aplastic anemia and 4 to myelodysplastic syndrome (MDS). Flow cytometry results were not reported in the majority of cases, and only 1 case reported coexistence of a PNH clone, identified in a pregnant patient with AATP (Zimmerman et al. 2019). Discussion: AATP is defined as severe thrombocytopenia with bone marrow showing marked decrease or absence of megakaryocytes with preservation of other cell lineages. This broad definition encompasses a range of causes, and our review of the literature highlights the heterogenous nature of AATP which has several proposed mechanisms and a number of therapeutic options. The best evidence suggests that AATP is often secondary to T-cell-mediated suppression of megakaryocytopoeisis, which has been demonstrated by in vitro studies, and is supported in vivo by a case of AATP following PD-1 inhibition (Iyama et al. 2020), and frequent response of AATP to T-cell-directed IST. The co-existence of a PNH clone in our case lends further support to a T-cell-mediated autoimmune process, analogous to the mechanism described in aplastic anemia and hypoproliferative MDS. The application of molecular diagnostics may help to further elucidate the role of clonal hematopoiesis and intrinsic stem cell defects versus humoral and cell-mediated autoimmunity in AATP. Disclosures No relevant conflicts of interest to declare.


1977 ◽  
Vol 11 (4) ◽  
pp. 492-492
Author(s):  
Norma K C Ramsay ◽  
William Krivit ◽  
Mark E Nesbit ◽  
Peter F Coccia ◽  
John H Kersey

2016 ◽  
Vol 82 (3) ◽  
pp. 440
Author(s):  
Michael Cubbage ◽  
Kenneth McClain ◽  
Michele Redell ◽  
Judith Margolin ◽  
Reshma Kulkarni ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2716-2722 ◽  
Author(s):  
Kentaro Horikawa ◽  
Hideki Nakakuma ◽  
Tatsuya Kawaguchi ◽  
Norihiro Iwamoto ◽  
Shoichi Nagakura ◽  
...  

Bone marrow (BM) hypoplasia is a major cause of death in paroxysmal nocturnal hemoglobinuria (PNH). However, little is known about the molecular events leading to the hypoplasia. Considering the close pathologic association between PNH and aplastic anemia (AA), it is suggested that a similar mechanism operates in the development of their BM failure. Recent reports have indicated apoptosis-mediated BM suppression in AA. It is thus conceivable that apoptosis also operates to cause BM hypoplasia in PNH. If this is the case, PNH clones need to survive apoptosis and show considerable expansion leading to clinical manifestations. We report here that granulocytes obtained from 11 patients with PNH were apparently less susceptible than those from 20 healthy individuals to both spontaneous apoptosis without any ligands and that induced by anti-FAS (CD95) antibody in vitro. The patients' BM CD34+ cells were also resistant to apoptosis induced by treatment with tumor necrosis factor-α, interferon-γ, and subsequently with anti-FAS antibody. In lymphocytes, the pathologic resistance was not discriminated from inherent resistance to apoptosis. Granulocytes from 13 patients with AA and 12 patients with myelodysplastic syndrome (MDS) exhibited similar resistance to apoptosis. CD34+ cells from MDS-BM also showed similar tendency. Thus, the comparative resistance to apoptosis supports the pathogenic implication of apoptosis in marrow injury of PNH and related stem cell disorders.


Sign in / Sign up

Export Citation Format

Share Document