Comparison of mechanical properties of epoxy composites reinforced with stitched glass and carbon fabrics: Characterization of mechanical anisotropy in composites and investigation on the interaction between fiber and epoxy matrix

2008 ◽  
Vol 29 (8) ◽  
pp. 840-853 ◽  
Author(s):  
Volkan Çeçen ◽  
Mehmet Sarikanat ◽  
Hasan Yildiz ◽  
Ismail H. Tavman
2021 ◽  
Author(s):  
Johannes Essmeister ◽  
M. Josef Taublaender ◽  
Thomas Koch ◽  
D. Alonso Cerrón-Infantes ◽  
Miriam M. Unterlass ◽  
...  

A novel class of fully organic composite materials with well-balanced mechanical properties and improved thermal stability was developed by incorporating highly crystalline, hydrothermally synthesized polyimide microparticles into an epoxy matrix.


2019 ◽  
Vol 36 (1) ◽  
pp. 47-62
Author(s):  
AR Mohammed ◽  
MS Nurul Atiqah ◽  
Deepu A Gopakumar ◽  
MR Fazita ◽  
Samsul Rizal ◽  
...  

Natural fiber-reinforced composites gained considerable interest in the scientific community due to their eco-friendly nature, cost-effective, and excellent mechanical properties. Here, we reported a chemical modification of kenaf fiber using propionic anhydride to enhance the compatibility with the epoxy matrix. The incorporation of the modified woven and nonwoven kenaf fibers into the epoxy matrix resulted in the improvement of the thermal and mechanical properties of the composite. The thermal stability of the epoxy composites was enhanced from 403°C to 677°C by incorporating modified woven kenaf fibers into the epoxy matrix. The modified and unmodified woven kenaf fiber-reinforced epoxy composites had a tensile strength of 64.11 and 58.82 MPa, respectively. The modified woven composites had highest flexural strength, which was 89.4 MPa, whereas, for unmodified composites, it was 86.8 MPa. The modified woven fiber-reinforced epoxy composites showed the highest value of flexural modulus, which was 6.0 GPa compared to unmodified woven composites (5.51 GPa). The impact strength of the epoxy composites was enhanced to 9.43 kJ m−2 by the incarnation of modified woven kenaf fibers into epoxy matrix. This study will be an effective platform to design the chemical modification strategy on natural fibers for enhancing the compatibility toward the hydrophobic polymer matrices.


RSC Advances ◽  
2014 ◽  
Vol 4 (83) ◽  
pp. 44282-44290 ◽  
Author(s):  
Jun Hou ◽  
Guohua Li ◽  
Na Yang ◽  
Lili Qin ◽  
Maryam E. Grami ◽  
...  

The fabricated surface modified boron nitride epoxy composites exhibit high thermal conductivity, superior thermal stability and good mechanical properties while retaining good electrical insulation properties.


2014 ◽  
Vol 775-776 ◽  
pp. 284-289 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Wellington Pereira Inácio ◽  
Artur Camposo Pereira ◽  
Michel Picanço Oliveira

The tensile properties of DGEBA/TETA epoxy matrix composites reinforced with different amounts of sisal fibers were evaluated. Composites reinforce with up to 30% in volume of long, continuous and aligned sisal fibers were room temperature tested in an Instron machine. The fracture was analyzed by SEM. The results showed significant changes in the mechanical properties with the amount of sisal fibers. These mechanical properties were compared with other bend-tested composites results. The fracture analysis revealed a weak fiber/matrix interface, which could be responsible for the performance of some properties.


RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37130-37138 ◽  
Author(s):  
Chunmei Zhang ◽  
Hua Li ◽  
Zhangzhi Zhuo ◽  
Roberto Dugnani ◽  
Wenchao Xue ◽  
...  

Piezo-damping (ZnSnO3/PVDF)@PPy nanofibers/EP composites exhibit greatly improved damping and mechanical properties than epoxy matrix using lead-free self-poled ZnSnO3 as piezoelectric phase.


2011 ◽  
Vol 287-290 ◽  
pp. 197-200
Author(s):  
Hai Qing Hu ◽  
Li Zhao ◽  
Jia Qiang Liu ◽  
Shi Bao Wen ◽  
Yong Jiang Gu ◽  
...  

Carbon fiber powder (CFP) instead of the traditional glass fiber (cloth) was used to reinforce epoxy resin for rapid tooling. There are two obvious advantages: one is to utilize the waste materials, which is good for the protection of the environment; another is to simplify the producing process by cast molding. The filling amount and dispersing process of CFP was studied in this paper. The results show that when the amount of CFP was 10 wt%, and the ultrasonic time is more than 15 min, the CFP can be dispersed in the epoxy matrix uniformly, and the mechanical properties can meet the requirement of epoxy molding.


2017 ◽  
Vol 727 ◽  
pp. 546-552
Author(s):  
Xia Jun Wang ◽  
Dong Lin Zhao ◽  
Dong Dong Zhang ◽  
Cheng Li ◽  
Ran Ran Yao

Graphene nanosheets (GNSs) were modified with aqueous ammonia and hydrogen peroxide, to obtain amine (–NH2) functionalized GNSs (AFGNSs) and enhance the bondings between the GNSs and epoxy matrix. We report an easy and efficient approach to improve the mechanical properties and thermal conductivity of epoxy matrix composites by combining one dimensional multi-walled carbon nanotubes and two dimensional AFGNSs. The long and tortuous MWCNTs can bridge adjacent AFGNSs and inhibit their aggregation, resulting in an increased contact surface area between GNS/MWCNT structures and the polymer. A remarkable synergetic effect between the GNSs and MWCNTs on the enhanced mechanical properties and thermal conductivity of the epoxy composites was demonstrated. The addition of 2 wt.% MWCNT-GNS hybrid fillers improved the tensile strength and flexural strength of the pristine epoxy by 20.71% and 55.51%, respectively. Thermal conductivity increased by 93.71% using MWCNT-GNS hybrid fillers compared to non-derivatised epoxy. This study has demonstrated that 2-D GNSs and 1-D MWCNTs have an obvious synergetic reinforcing effect on the mechanical properties and a remarkable thermal conductivity enhancement in epoxy composites which provides an easy and effective way to design and improve the properties of composite materials.


2018 ◽  
Vol 9 (1) ◽  
pp. 1-22
Author(s):  
C. Karikal Chozhan ◽  
A. Chandramohan ◽  
M. Alagar

The silicon-containing epoxy/clay nanocomposites were developed by incorporating the surface-modified MMT clay upto 7wt% into Si-epoxy resin. The surface of the montmorillonite (MMT) clay was modified with two surface modifiers namely cetyltrimethylammonium bromide (CTAB) and 3-aminopropyltriethoxysilane (γ-APS). The surface modified clay reinforced Si-epoxy composites were developed in the form of castings, and were characterized for their thermal and mechanical properties. Thermal behaviour of the composites was characterized by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Mechanical properties were studied as per ASTM standards. Data result from the different studies, it is inferred that the surface modified clay reinforced Si-epoxy composites exhibit lower Tg than that of neat epoxy matrix (127°C <165°C). The decomposition temperature for 60% weight loss of clay reinforced Si-epoxy composites is 674–823°C which is higher when compared to that of neat epoxy matrix. For 5wt% clay reinforced Si-epoxy composites, the values of tensile, flexural and impact strength are increased to 26%, 21% and 29% respectively. The storage modulus (E’) is increased from 5932 to 6308 MPa for clay reinforced Si-epoxy resin. XRD analysis confirmed the well-dispersed exfoliated nanocomposites structure.


Sign in / Sign up

Export Citation Format

Share Document