Eco‐friendly bamboo fiber‐reinforced poly(butylene succinate) biocomposites

2021 ◽  
Author(s):  
Sommai Pivsa‐Art ◽  
Weraporn Pivsa‐Art
2010 ◽  
Vol 123-125 ◽  
pp. 1031-1034 ◽  
Author(s):  
Sandhyarani Biswas ◽  
Alok Satapathy ◽  
Amar Patnaik

In order to obtain the favoured material properties for a particular application, it is important to know how the material performance changes with the filler content under given loading conditions. In this study, a series of bamboo fiber reinforced epoxy composites are fabricated using conventional filler (aluminium oxide (Al2O3) and silicon carbide (SiC) and industrial wastes (red mud and copper slag) particles as filler materials. By incorporating the chosen particulate fillers into the bamboo-fiber reinforced epoxy, synergistic effects, as expected are achieved in the form of modified mechanical properties. Inclusion of fiber in neat epoxy improved the load bearing capacity (tensile strength) and the ability to withstand bending (flexural strength) of the composites. But with the incorporation of particulate fillers, the tensile strengths of the composites are found to be decreasing in most of the cases. Among the particulate filled bamboo-epoxy composites, least value of void content are recorded for composites with silicon carbide filling and for the composites with glass fiber reinforcement minimum void fraction is noted for red mud filling. The effects of these four different ceramics on the mechanical properties of bamboo- epoxy composites are investigated and the conclusions drawn from the above investigation are discussed.


2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


JOM ◽  
2018 ◽  
Vol 71 (2) ◽  
pp. 548-558 ◽  
Author(s):  
Rupam Gogoi ◽  
Nityanshu Kumar ◽  
Shubham Mireja ◽  
Sham Sundar Ravindranath ◽  
Gaurav Manik ◽  
...  

2019 ◽  
Vol 136 (26) ◽  
pp. 47709 ◽  
Author(s):  
Haibo Long ◽  
Zhiqiang Wu ◽  
Qianqian Dong ◽  
Yuting Shen ◽  
Wuyi Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document