Design and multi‐objective optimization of the bumper beams prepared in long glass fiber‐reinforced polypropylene

2021 ◽  
Author(s):  
Ying Xue ◽  
Haibin Zhao ◽  
Yaxin Zhang ◽  
Zhiyong Gao ◽  
Dongjie Zhai ◽  
...  
Author(s):  
M Safari ◽  
M Salamat-Talab ◽  
A Abdollahzade ◽  
A Akhavan-Safar ◽  
LFM da Silva

The experimental assessment of the creep age forming performance of fiber metal laminates was considered in this study. To this end, different fiber metal laminates with the stacking sequence of [Al/02/Al] were manufactured using aluminum alloy 6061 sheets as skins along with E-glass fiber-reinforced polypropylene and E-glass fiber-reinforced polyamide 6 as two different cores. Next, a comprehensive investigation was conducted on the impacts of two main parameters in the creep forming process, i.e. the effect of time and temperature on the spring-back properties of deformed fiber metal laminates. Initially, using the design of experiments and based on the response surface methodology, an imposed spring-back of the creep age formed fiber metal laminates was modeled and the governing linear regression equations were derived and verified. Then, to find the best combination yielding the minimum spring-back, the process inputs (time and temperature) were optimized. The results proved that with an increase in either time or temperature, the spring-backs of the two types of creep age formed fiber metal laminates decreased due to the decrease in elastic strains and the increase of creep strains. Also, to achieve a creep age formed fiber metal laminate with minimum spring-back according to multi-objective optimization in both fiber metal laminates, the most proper values of time and temperature should be taken as 6 h and approximately 160°C, respectively.


Author(s):  
Fabrizio Quadrini ◽  
Claudia Prosperi ◽  
Loredana Santo

A rubber-toughened thermoplastic composite was produced by alternating long glass fiber reinforced polypropylene prepregs and rubber particles. Several composite laminates were obtained by changing the number of plies, the rubber powder size distribution, and the stacking sequence. Quasi-static mechanical tests (tensile and flexure) and time dependent tests (dynamic mechanical analysis and cyclic flexure) were carried out to evaluate strength and damping properties. As expected, 10 wt% rubber-filled laminates showed lower strengths than rubber-free laminates but the effect of the rubber on the composite damping properties was evident. At low rates, the rubber particles can also double the dissipated energy under cyclic loading, even if this effect disappears by increasing the test rate.


Sign in / Sign up

Export Citation Format

Share Document