Blends of thermoplastic polyurethane and maleic-anhydride grafted polyethylene. I: Morphology and mechanical properties

1999 ◽  
Vol 39 (6) ◽  
pp. 1035-1048 ◽  
Author(s):  
Petra Pötschke ◽  
Katrin Wallheinke ◽  
Herbert Stutz
2020 ◽  
Vol 841 ◽  
pp. 70-75
Author(s):  
Chao He ◽  
Han Wang ◽  
Li Xiong Huang ◽  
Ping Wang ◽  
Wei Gao

Electrospinning is an important method for preparing nanofibers, which are highly promising for applications in a wide range of fields such as purification/filtration, photoelectric devices, battery separators, catalysis and tissue engineering. These applications often use composite materials and have specific requirements for mechanical properties. Therefore, how to get nanofibers films with ideal mechanical properties by changing the composite mode is an important process problem for the given two or more materials. Based on the far-field electrospinning, this study selected polyacrylonitrile (PAN) and thermoplastic polyurethane (TPU) to explore the differences of three composite methods: mixed spinning, multi-nozzle simultaneous spinning and superposition spinning. Three kinds of analysis can be seen in this study, which include morphology features, thickness measurement and mechanical properties of samples. Multi-nozzle simultaneous spinning has very limited changes. Mixed spinning and superposition spinning are beneficial to the improvement of nanofibers films morphology and mechanical properties. Among them, the composite films through superposition spinning are thinner.


2015 ◽  
Vol 22 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Jianbing Guo ◽  
Daohai Zhang ◽  
Huiju Shao ◽  
Kaizhou Zhang ◽  
Bin Wu

AbstractA series of long glass fiber (LGF)-reinforced epoxy resin (ER), thermoplastic polyurethane (TPU) elastomers, and poly(methyl methacrylate) (PMMA) composites were prepared by using self-designed impregnation device. Dynamic mechanical properties of the LGF/ER/TPU/PMMA composites have been investigated by using dynamic mechanical thermal analysis (DMA). The results indicated that the content of PMMA and TPU and scanning frequency had important influence on dynamic mechanical properties and glass transition of the LGF/ER/TPU/PMMA composites. In addition, the Arrhenius relationship has been used to calculate the activation energy of α-transition of the LGF/ER/TPU/PMMA composites. The thermal properties of the LGF/ER/TPU/PMMA composites were studied by thermogravimetric analysis (TGA). Morphology and mechanical properties of the composites are investigated by scanning electron microscopy (SEM), a universal testing machine, and a ZBC-4 Impact Pendulum.


2015 ◽  
Vol 659 ◽  
pp. 463-467
Author(s):  
Sirirat Wacharawichanant ◽  
Parida Amorncharoen ◽  
Ratiwan Wannasirichoke

The effects of polypropylene-graft-maleic anhydride (PP-g-MA) compatibilizers on the morphology and mechanical properties of polyoxymethylene (POM)/acrylonitrile-butadiene-styrene (ABS) blends were investigated. Two types of compatibilizers, PP-g-MA with maleic anhydride 0.50 wt% (PP-g-MA1) and PP-g-MA with maleic anhydride 1.31 wt% (PP-g-MA2) were used to study the interfacial adhesion of POM and ABS. POM/ABS blends with and without PP-g-MA compatibilizer were prepared by an internal mixer and molded by compression molding. Scanning electron microscope (SEM) was used to investigate the morphology of ABS phase in POM matrix. The results found that POM/ABS blends clearly demonstrated a two phase separation of dispersed ABS phase and the POM matrix phase, and ABS phase dispersed as spherical domains in POM matrix in a range of ABS 10-30 wt% and the blends containing ABS more than 30 wt% showed the elongated structure of ABS phase. The addition of PP-g-MA could improve the interfacial adhesion of POM/ABS blends due to the domain size of ABS phase decreased after adding PP-g-MA. The mechanical properties showed that the impact strength of POM/ABS blends decreased in a range of 10-20 wt% and did not change after 20 wt%. The addition of PP-g-MA did not change the impact strength of POM/ABS blends. The Young’s modulus of POM/ABS blends increased up to 30 wt% of ABS and then decreased. While the blends showed the decrease of tensile strength and percent strain at break with increasing ABS content. The addition of PP-g-MA increased the tensile strength of POM/ABS blends in a range of 30-40 wt% of ABS. The above results indicated that the morphology had an effect on the mechanical properties of polymer blends.


Sign in / Sign up

Export Citation Format

Share Document