Morphology, mechanical properties, and thermal stability of rigid PVC/clay nanocomposites

2010 ◽  
Vol 51 (4) ◽  
pp. 641-646 ◽  
Author(s):  
Margarita Mondragón ◽  
Saúl Sánchez-Valdés ◽  
María E. Sanchez-Espíndola ◽  
Jesús E. Rivera-López
2013 ◽  
Vol 844 ◽  
pp. 217-220 ◽  
Author(s):  
Uraiwan Sookyung ◽  
Woothichai Thaijaroen ◽  
Norbert Vennemann ◽  
Charoen Nakason

Sodium-montmorillonite (Na-MMT) nanoclay was modified with different types of alkylamine organic modifier including primary and quaternary alkylamines. Influence types of alkylamine on properties of natural rubber/clay nanocomposites was investigated. It was found that organoclays caused improvement of mechanical properties of natural rubber, and accelerated vulcanization reaction with higher degree of crosslinking. In addition, organoclay modified with quaternary alkylamine showed significance cure reversion phenomenon which caused reduction of thermal stability. On the other hand, primary alkylamine modified nanoclay caused improvement of thermal stability of natural rubber. Moreover, stress relaxation was observed at the melting temperature of the modifying agent.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1502
Author(s):  
Eliezer Velásquez ◽  
Sebastián Espinoza ◽  
Ximena Valenzuela ◽  
Luan Garrido ◽  
María José Galotto ◽  
...  

The deterioration of the physical–mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2903
Author(s):  
Juvenal Giogetti Nemaleu Deutou ◽  
Rodrigue Cyriaque Kaze ◽  
Elie Kamseu ◽  
Vincenzo M. Sglavo

The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.


2013 ◽  
Vol 98 (12) ◽  
pp. 2497-2502 ◽  
Author(s):  
Stephen F. Bartolucci ◽  
Karen E. Supan ◽  
Jeffrey S. Wiggins ◽  
Lawrence LaBeaud ◽  
Jeffrey M. Warrender

Sign in / Sign up

Export Citation Format

Share Document