Barrier properties and abrasion resistance of biopolymer‐based coatings on biodegradable poly(lactic acid) films

2019 ◽  
Vol 59 (9) ◽  
pp. 1874-1881 ◽  
Author(s):  
Zarif Farhana Mohd Aris ◽  
Vishal Bavishi ◽  
Rashmi Sharma ◽  
Ramaswamy Nagarajan
LWT ◽  
2021 ◽  
pp. 112356
Author(s):  
Phatthranit Klinmalai ◽  
Atcharawan Srisa ◽  
Yeyen Laorenza ◽  
Wattinee Katekhong ◽  
Nathdanai Harnkarnsujarit

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2621 ◽  
Author(s):  
Hai Chi ◽  
Wenhui Li ◽  
Chunli Fan ◽  
Cheng Zhang ◽  
Lin Li ◽  
...  

The microstructure, thermal properties, mechanical properties and oxygen and water vapor barrier properties of a poly(lactic acid) (PLA)/nano-TiO2 composite film before and after high pressure treatment were studied. Structural analysis showed that the functional group structure of the high pressure treated composite film did not change. It was found that the high pressure treatment did not form new chemical bonds between the nanoparticles and the PLA. The micro-section of the composite film after high pressure treatment became very rough, and the structure was depressed. Through the analysis of thermal and mechanical properties, high pressure treatment can not only increase the strength and stiffness of the composite film, but also increase the crystallinity of the composite film. Through the analysis of barrier properties, it is found that the barrier properties of composite films after high pressure treatment were been improved by the applied high pressure treatment.


2018 ◽  
Vol 381 (1) ◽  
pp. 1800133 ◽  
Author(s):  
Elaine C. Lopes Pereira ◽  
Bluma G. Soares ◽  
Rayan B. Jesus ◽  
Alex S. Sirqueira

2021 ◽  
pp. 096739112110576
Author(s):  
Ying Zhou ◽  
Can Chen ◽  
Lan Xie ◽  
Xiaolang Chen ◽  
Guangqiang Xiao ◽  
...  

In this work, novel plasticizing biodegradable poly (lactic acid) (PLA) composites were prepared by melt blending of jute and tung oil anhydride (TOA), and the physical and mechanical properties of PLA/jute/TOA composites were tested and characterized. The impact strength of PLA/jute/TOA composites significantly increases with increasing the content of TOA. The SEM images of fracture surface of PLA/jute/TOA composites become rough after the incorporation of TOA. In addition, TOA changes the crystallization temperature and decomposition process of PLA/jute/TOA composites. With increasing the amount of TOA, the value of storage modulus (E′) of PLA/jute/TOA composites gradually increases. The complex viscosity (η*) values for all samples reduce obviously with increasing the frequency, which means that the pure PLA and PLA/jute/TOA composites is typical pseudoplastic fluid. This is attributed to the formation of crosslinking, which restricts the deformation of the composites.


Sign in / Sign up

Export Citation Format

Share Document