Viscosity decrease by interfacial slippage between immiscible polymers

Author(s):  
Nantina Moonprasith ◽  
Muhammad Shahrulnizam Nasri ◽  
Riza Asmaa Saari ◽  
Panitha Phulkerd ◽  
Masayuki Yamaguchi
2018 ◽  
Vol 24 (6) ◽  
pp. 921-934 ◽  
Author(s):  
Mohammad Abu Hasan Khondoker ◽  
Asad Asad ◽  
Dan Sameoto

Purpose This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design is intended to improve adhesion of dissimilar thermoplastics without the need for chemical compatibilization so that filaments from many different sources can be used effectively. Therefore, there is a need to invent an alternative solution for printing multiple immiscible polymers in an FDM system with the desired adhesion. Design/methodology/approach In this study, the authors have developed a bi-extruder for FDM systems which can print two thermoplastics through a single nozzle with a static intermixer to enhance bonding between input materials. The system can also change the composition of extrudates continuously. Findings The uniqueness of this extruder is in its easy access to the internal channel so that a static intermixer can be inserted, enabling deposition of mechanically interlocked extrudates composed of two immiscible polymers. Without this intermixer, the bi-extruder extrudes with simple side-by-side co-extrusion having no mechanical interlocking. The bi-extruder was characterized by printing objects using pairs of materials including polylactic acid, acrylonitrile butadiene styrene and high impact polystyrene. Microscope images of the cross-sections of the extrudates confirm the ability of this bi-extruder to control the composition as desired. It was also found that the mechanically interlocked extrudates composed of two immiscible polymers substantially reduces adhesion failures within and between filaments. Originality/value In this study, the first-ever FDM extruder with a mechanical blending feature next to the nozzle has been designed and used to successfully print FGM objects with improved mechanical properties.


2018 ◽  
Vol 136 (16) ◽  
pp. 47386
Author(s):  
Ryosuke Hachisuka ◽  
Toshiki Inomata ◽  
Masayuki Yamaguchi

2013 ◽  
Vol 28 ◽  
pp. 84-88 ◽  
Author(s):  
Santosh Khanal ◽  
Alina Shakya ◽  
Goerg H. Michler ◽  
Boulos Youssef ◽  
Jean M. Saiter ◽  
...  

In this work, a commercially available Styrene-Isoprene-Styrene (SIS)triblock copolymer was modified into epoxidised version (ESIS)using performic acid generated in situ from hydrogen peroxide and formic acid. The epoxidised sample was further acrylated to prepare acrylated version (ASIS). The nanocomposites of each sample (SIS, ESIS and ASIS) were prepared using boehmite nanoparticles as filler by solution casting method. The polymers were characterized by Fourier Transform Infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). TEM investigations revealed that that the epoxidation of the diene block enhanced the dispersion of the nanofiller in the polymer matrix while the segregation of the nanoparticles towards the interface of the immiscible polymers was observed in the acrylated block copolymer based nanocomposite. DOI: http://dx.doi.org/10.3126/jncs.v28i0.8112 Journal of Nepal Chemical Society Vol. 28, 2011 Page: 84-88 Uploaded Date: May 24, 2013


1972 ◽  
Vol 56 (7) ◽  
pp. 3592-3601 ◽  
Author(s):  
Eugene Helfand ◽  
Yukiko Tagami
Keyword(s):  

Author(s):  
T. H. Lengyel ◽  
Rong Long ◽  
P. Schiavone

We consider the role of interfacial slippage in the deformation and stress fields near the tip of a plane interface crack occurring between a compressible hyperelastic material and a rigid substrate. Specifically, we draw comparisons between the two limiting cases of ‘no-slip’ (infinitely high friction) and ‘frictionless’ (zero friction) surfaces by performing corresponding asymptotic analyses in the crack-tip region. Our results indicate that for the no-slip case, when the body is subjected to far-field loading, the crack deforms to a wedge-like shape consistent with experimental observations reported in the literature. Moreover, in this case, the wedge angle is shown to be directly related to ratios of various Cauchy stress components on the bonded surface in the near-tip region. Finite-element simulations reveal that the wedge angle also depends on material compressibility and the far-field loading conditions. By contrast, the analysis of the frictionless case reveals that the crack consistently opens into a smooth parabolic shape with a right wedge angle and near-tip stress field dominated by the normal stress at the surface. The results established here can be used as a basis for the understanding of the role of varying degrees of slippage on interfacial cracks.


Polymer ◽  
1993 ◽  
Vol 34 (1) ◽  
pp. 25-28 ◽  
Author(s):  
G.G. Cameron ◽  
M.Y. Qureshi ◽  
E. Ross ◽  
I.S. Miles ◽  
J. Richardson

Author(s):  
Chang Dae Han

Polymer researchers have had a long-standing interest in understanding the evolution of blend morphology when two (or more) incompatible homopolymers or copolymers are melt blended in mixing equipment. In industry, melt blending is conducted using either an internal (batch) mixer (e.g., a Banbury mixer or a Brabender mixer) or a continuous mixer (e.g., a twin-screw extruder or a Buss kneader). There are many factors that control the evolution of blend morphology during compounding, the five primary ones being (1) blend composition, (2) rheological properties (e.g., viscosity ratio) of the constituent components, (3) mixing temperature, which in turn affects the rheological properties of the constituent components, (4) the duration of mixing in a batch mixer or residence time in a continuous mixer, and (5) rotor speed in a batch mixer or screw speed in a continuous mixer (i.e., local shear rate or shear stress). When two immiscible polymers are compounded in mixing equipment, two types of blend morphology are often observed: dispersed morphology and co-continuous morphology. Numerous investigators have reported on blend morphology of immiscible polymers, and there are too many papers to cite them all here. Some investigators (Han 1976, 1981; Han and Kim 1975; Han and Yu 1972; Nelson et al. 1977; van Oene 1978) examined blend morphology to explain the seemingly very complicated rheological behavior of two-phase polymer blends, and others (Favis and Therrien 1991; He et al. 1997; Ho et al. 1990; Miles and Zurek 1988; Scott and Macosko 1995; Shih 1995; Sundararaj et al. 1992, 1996) investigated blend morphology as affected by processing conditions. Today, it is fairly well understood from experimental studies under what conditions a dispersed morphology or a co-continuous morphology may be formed, and whether a co-continuous morphology is stable, giving rise to an equilibrium morphology, or whether it is an unstable intermediate morphology that eventually is transformed into a dispersed morphology (Lee and Han 1999a, 1999b, 2000). Let us consider the morphology evolution in an immiscible blend consisting of two semicrystalline polymers, A and B, in a compounding machine, and let us assume that the melting point (Tm,A) of polymer A is lower than the melting point (Tm,B) of polymer B.


1978 ◽  
Vol 16 (3) ◽  
pp. 415-425 ◽  
Author(s):  
Kiyohisa Takahashi ◽  
Masahiko Ikeda ◽  
Kazuhisa Harakawa ◽  
Kenji Tanaka ◽  
Tetsuya Sakai

Sign in / Sign up

Export Citation Format

Share Document