Evaluation of the rheological and electrical percolation of high‐density polyethylene/carbon black composites using mathematical models

Author(s):  
Moacy P. SiIva ◽  
Shirley N. Cavalcanti ◽  
Amanda M. Alves ◽  
Daniel M. G. Freitas ◽  
Pankaj Agrawal ◽  
...  
2014 ◽  
Vol 97 ◽  
pp. 34-40 ◽  
Author(s):  
Shaodi Zheng ◽  
Jie Deng ◽  
Luqiong Yang ◽  
Danqi Ren ◽  
Shinlin Huang ◽  
...  

2020 ◽  
Vol 869 ◽  
pp. 229-233
Author(s):  
Timur A. Borukaev ◽  
Abubekir Kh. Shaov ◽  
Raisa D. Archakova ◽  
Zakhirat Kh. Sultigova

The influence of carbon black on the deformation-strength properties of high density polyethylene is considered. It was found that the deformation-strength properties of the polymer matrix change over the entire range of the filler content. The amount of carbon black that can be introduced into high-density polyethylene and obtained a composite material with the optimal combination of stiffness, strength and ductility is established. It was shown that the change in the deformation-strength properties of composites is due to the behavior and influence of carbon black particles on the structure of the polymer matrix.


2018 ◽  
Vol 52 (20) ◽  
pp. 2719-2727 ◽  
Author(s):  
Alper Uysal

In this study, surface roughness and burr were investigated in drilling of pure and carbon black reinforced high-density polyethylene at three cutting speeds and feeds with three drill point angles. The measurement results of surface roughness of drilled holes were evaluated by Taguchi and analysis of variance statistical methods to specify the optimal drilling parameters and the effects of selected drilling parameters. According to the results, lower surface roughness and fewer burrs were obtained in drilling at high cutting speed and low feed with drill tools having small point angle and it was specified that the carbon black reinforcement reduced the surface roughness. Additionally, the optimal drilling parameters were determined as drill point angle of 80°, feed of 0.1 mm/rev and cutting speed of 120 m/min and the most effective parameter was found as drill point angle and the least effective parameter was found as feed.


2010 ◽  
Vol 123-125 ◽  
pp. 59-62 ◽  
Author(s):  
T. Jeevananda ◽  
O.G. Palanna ◽  
Joong Hee Lee ◽  
Siddaramaiah ◽  
C. Ranganathaiah

The present study investigates the effect of the carboxylated multi-walled carbon nanotube (0~3 wt %) content on the electrical and thermal properties of high density polyethylene/carbon black/carboxylated multi-walled carbon nanotube (HDPE/CB/c-MWNT) hybrid nanocomposites. The room temperature electrical resistivity and positive temperature coefficient (PTC) intensity of the nanocomposites significantly improved with the addition of c-MWNT. However, the heat of fusion decreases as the amount of c-MWNT increases. Further, the microstructural parameters such as the fractional free volume (Fv) and free volume hole size (Vf) of the nanocomposites shows appreciable changes around the percolation threshold. Secondly, the PALS results seem to correlate well with the electrical and thermal properties of the composites.


2011 ◽  
Vol 374-377 ◽  
pp. 1409-1413
Author(s):  
Xiao Wei Wu ◽  
Dong Wei Cao ◽  
Hai Yan Zhang

In order to avoid the phase separation of the high density-polyethylene modified asphalt, a composite material modifier was prepared in the melt blending process with High density-Polyethylene (HDPE) and Styrene-butadiene-styrene (SBS) and a filler of Carbon black (CB). The storage stability of composite material (HDPE-SBS) modified asphalt was investigated by hot storage stability test and optical microscopic observation. The storage-stable mechanism of HDPE-SBS modified asphalt was analyzed also. The experimental results indicated that the difference of the softening point after storing at high temperature for 48h was very small. Micrographs of HDPE-SBS modified asphalt demonstrated that HDPE-SBS composite modifier particles dispersed uniformly and compactly and there were no obvious phase separations in the modified asphalt within a certain CB content range.


Polymer ◽  
2009 ◽  
Vol 50 (26) ◽  
pp. 6350-6356 ◽  
Author(s):  
Qing Cao ◽  
Yihu Song ◽  
Yeqiang Tan ◽  
Qiang Zheng

Sign in / Sign up

Export Citation Format

Share Document