Measurement of water vapor transmission through polyethylene electrical insulation

1970 ◽  
Vol 10 (1) ◽  
pp. 32-37 ◽  
Author(s):  
R. M. Eichhorn
2015 ◽  
Vol 18 (3) ◽  
pp. 245-255
Author(s):  
Teodor-Cezar Codau ◽  
Elena Onofrei ◽  
Stojanka Petrusic ◽  
Gauthier Bedek ◽  
Daniel Dupont ◽  
...  

2021 ◽  
Author(s):  
Minho Seok ◽  
Sunghyun Yoon ◽  
Mookyum Kim ◽  
Young-Ho Cho

We present a porous polydimethylsiloxane (PDMS) pulsewave sensor with haircell structures that improves both water vapor transmission rate (WVTR) and signal-to-noise ratio (SNR).


Author(s):  
Réka Lilla Kovács ◽  
Lajos Daróczi ◽  
Péter Barkóczy ◽  
Eszter Baradács ◽  
Eszter Bakonyi ◽  
...  

AbstractIn this work, we evaluate the water vapor transmission rate (WVTR), the permeability (P), solubility (S), and diffusion (D) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponential factor—has also been determined from the data: $$D_{B44} = 35.2\;{\text{cm}}^{2} \;{\text{s}}^{ - 1} \exp \left( { - 25\;{\text{kJ mol}}^{ - 1} /{\text{RT}}} \right)$$ D B 44 = 35.2 cm 2 s - 1 exp - 25 kJ mol - 1 / RT ; $$D_{B72} = 9.5\;{\text{cm}}^{2} \;{\text{s}}^{ - 1} \exp \left( { - 23\;{\text{kJ mol}}^{ - 1} /{\text{RT}}} \right)$$ D B 72 = 9.5 cm 2 s - 1 exp - 23 kJ mol - 1 / RT ; $$D_{\text{Incralac}} = 622.8\;{\text{cm}}^{2} \;{\text{s}}^{ - 1} { \exp }\left( { - 28\;{\text{kJ mol}}^{ - 1} /{\text{RT}}} \right)$$ D Incralac = 622.8 cm 2 s - 1 exp - 28 kJ mol - 1 / RT . These resins are important coating materials, for example, for conservators to protect metallic artifacts, such as statues, against corrosion. Despite Paraloid B44 and B72 resins being considered as reference materials in conservation practice, that is, new coating materials (either water vapor retarders or transmitters) are often compared to them, there are no comprehensive data for the quantities describing the vapor permeability (P, S, D) of these materials. The measurements are based on the ISO cup-method using substrate/coating composite samples. The strength of this technique is that it can also be used when the coating is non-self-supporting; nevertheless, P, S, and D can be deduced for the coating layer itself, and it seems to be a standardizable procedure for comparative performance testing of coating materials. Paraloid B72 layers exhibited higher WVTRs—from 39 to 315 g m−2 day−1 as the temperature increased from 5 to 35°C—compared to Paraloid B44 and Incralac coatings—from 17 to 190 g m−2 day−1, respectively. The transmission rate parameters were also compared to the results of corrosion tests. Incralac was the most effective corrosion inhibitor, and the performance of the B44 was better than the B72, which is in good agreement with the transmission rate tests.


2015 ◽  
Vol 9 (2) ◽  
pp. 341-351 ◽  
Author(s):  
Hongchao Zhang ◽  
Kanishka Bhunia ◽  
Pengqun Kuang ◽  
Juming Tang ◽  
Barbara Rasco ◽  
...  

Author(s):  
Nurwani Hayati ◽  
Lazulva Lazulva

The manufacture of the bioplastic was done through the mixing process using an aquades solvent with a ratio massa 10 gram and 7 gram cornstarch, 150 mL aquades, 2 Ml glycerol and 0,5 gram ZnO. This study aim to find out physical characteristies (water vapour transmission rate, water content, thickness,biodegradation) and mechanical charateristics (tensile strength, elongasi, modulus young) are made of cornstrach (Zea mays) using ZnO metal. From the test results tensile strength was 2.744-4.018 Mpa, percentage of elongation was 28.4632.383%, modulus young’s was 8.9031026535-14.08617709Mpa, thickness was 0.16-0.29mm, water vapor transmission rate was 0.4329-1.52525g/m2.24 hours, water content was 13.5-14.5%, and biodegradation was 3.7798-7.0346% and 455-809 days.


2021 ◽  
Vol 1044 ◽  
pp. 191-200
Author(s):  
Emma Rochima ◽  
Nur Silmi Nafisah ◽  
Rosidah ◽  
Iis Rostini ◽  
Subaryono

The biocomposites were prepared from chitosan, carragenan and modified tapioca with lauric acid addition. The biocomposite were used as edible film material thus improving the mechanical characteristics. The purpose of this study was to determine the amount of lauric acid addition that produced biocomposites with the best characteristics. This study used experimental method. The different concentration of lauric acid used as the treatment was 0%, 10%, 20%, 30%, 40% from total solid of hydrocolloids materials (w/w). Data were analyzed statistically using the F test (ANOVA test) with confidence level of 95%. The results showed more than 10% addition of lauric acid decreased the value of moisture content, tensile strenght, percent elongation and water vapor transmission but increase thickness, opacity and transparency value. The addition of 10% lauric acid produced biocomposite with the best characteristics according to JIS (Japanese Industrial Standard) which had the moisture content of 42.65%, thickness of 0.047 mm, tensile strength of 13.8 MPa, percent elongation of 29.2%, water vapor transmission rate of 8.5 g/m2/day, opacity 8.9% and transparency 7.5. This research used renewable and biodegradable materials that can be applied to produce edible packaging with the best characteristics and eco-friendly.


2020 ◽  
Vol 990 ◽  
pp. 318-324
Author(s):  
Arie Listyarini ◽  
Windri Handayani ◽  
Vivi Fauzia ◽  
Cuk Imawan

Ammonia is one of the compounds released during the food spoilage process, so a device that can detect ammonia can be used as an indicator of food spoilage. This article reports on the preparation and characteristics of Starch/PVA composite films with Syzygium oleana as indicator films to detect ammonia vapor. The indicator was made by first preparing the starch / PVA composite films by casting method and then the films were dipped in Syzygium oleana extract. These films were characterized by using a UV-Vis spectrophotometer, Fourier Transformed Infra-Red Spectrophotometer and tested for mechanical properties such as tensile strength and elongation, and the water vapor transmission rate (WVT). The results showed that the addition of PVA reduced the absorbance value in the UV and visible area, the value of the water vapor transmission rate and the tensile strength but the elongation value of the film on the other hand rose. The indicator films can detect ammonia which was marked by its color change from red to blue. For further application, it can be used as a smart packaging label that can detect food freshness.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2382
Author(s):  
Dong Min Seong ◽  
Heysun Lee ◽  
Jungbae Kim ◽  
Jeong Ho Chang

This work reports the preparation of a ceramic hybrid composite film with illite and polyethylene (illite-PE), and the evaluation of the freshness-maintaining properties such as oxygen transmission rate (OTR), water vapor transmission rate (WVTR), tensile strength, and in vitro cytotoxicity. The particle size of the illite material was controlled to within 10 μm. The illite-PE masterbatch and film were prepared using a twin-screw extruder and a blown film maker, respectively. The dispersity and contents of illite material in each masterbatch and composite film were analyzed using a scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). In addition, the OTR and WVTR of the illite-PE composite film were 8315 mL/m2·day, and 13.271 g/m2·day, respectively. The in vitro cytotoxicity of the illite-PE composite film was evaluated using L929 cells, and showed a cell viability of more than 92%. Furthermore, the freshness-maintaining property was tested for a packaging application with bananas; it was found to be about 90%, as indicated by changes in the color of the banana peel, after 12 days.


1979 ◽  
Vol 42 (3) ◽  
pp. 225-227 ◽  
Author(s):  
F. M. CLYDESDALE ◽  
J. H. MAIN ◽  
F. J. FRANCIS ◽  
K. M. HAYES

The equilibrium relative humidity isotherm of a cherry beverage base and a strawberry gelatin dessert mix colored with anthocyanins from grape skins, cranberries and roselle was evaluated versus a Red No. 2 control. As well, the water vapor transmission rate of the packaging material was evaluated to evaluate probable shelf-life. Results indicated that physical parameters, such as hygroscopicity, must be considered in estimating effects of the use of natural colorants in foods as well as the color and chemical stability normally investigated.


Sign in / Sign up

Export Citation Format

Share Document